非关系型数据库-----------探索 Redis高可用 与持久化

目录

一、Redis 高可用

1.1什么是高可用

1.2Redis的高可用技术

二、 Redis 持久化

2.1持久化的功能

2.2Redis 提供两种方式进行持久化

三、Redis 持久化之----------RDB

3.1触发条件

3.1.1手动触发

3.1.2自动触发

3.1.3其他自动触发机制

3.2执行流程

3.3启动时加载

四、Redis 持久化之----------AOF 

4.1开启AOF

4.2 执行流程

(1)命令追加(append)  内存

(2)文件写入(write)和文件同步(sync)

AOF缓存区的同步文件策略存在三种同步方式,它们分别是:

(3)文件重写(rewrite)

文件重写之所以能够压缩AOF文件,原因在于:

文件重写的触发,分为手动触发和自动触发:

文件重写的流程如下:

4.3启动时加载

五、RDB和AOF的优缺点

5.1RDB持久化

5.2AOF持久化


一、Redis 高可用

1.1什么是高可用

在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等

1.2Redis的高可用技术

在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群,下面分别说明它们的作用,以及解决了什么样的问题

  • 持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失
  • 主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
  • 哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
  • Cluster集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

高可用定义:范围宽泛,除保证提供正常服务,还要考虑数据容量的扩展,数据安全不安全是否会丢失等

持久化:最简单的高可用方法,主要是数据备份即将reids的内容存储到硬盘中保证数据不会因为进程退出丢失

二、 Redis 持久化

2.1持久化的功能

Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘

当下次Redis重启时,利用持久化文件实现数据恢复。

除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

2.2Redis 提供两种方式进行持久化

  • RDB 持久化:原理是快照的方式将 Reids在内存中的数据库记录定时保存到磁盘上。
  • AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地

三、Redis 持久化之----------RDB

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

RDB持久化方式:redis每隔一段时间将记录保存到硬盘上,类似于快照,定期保存

3.1触发条件

RDB持久化的触发分为手动触发和自动触发两种

3.1.1手动触发

save命令和bgsave命令都可以生成RDB文件

save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。

bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。

3.1.2自动触发

在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。

save m n
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave进行快照

vim /etc/redis/6379.conf--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes

3.1.3其他自动触发机制

除了save m n 以外,还有一些其他情况会触发bgsave:

  • 在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
  • 执行shutdown命令时,自动执行rdb持久化。

kill是不会触发bgsave

3.2执行流程

(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息

持久化: RDB

RDB: save bgsave    save命令和bgsave命令都可以生成RDB文件

3.3启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。

但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;

只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。

服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。

Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败

四、Redis 持久化之----------AOF 

RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。

与RDB相比,AOF的实时性更好因此已成为主流的持久化方案。

4.1开启AOF

Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:

vim /etc/redis/6379.conf--700行--#修改,开启AOF 
appendonly yes
--704行--#指定AOF文件名称
appendfilename"appendonly.aof"
--796行--#是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
---------------------------------------/etc/init.d/redis_6379 restart  #重启服务#查看redis
ls /var/lib/redis/6379/

4.2 执行流程

由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。

AOF的执行流程包括:

  • 命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
  • 文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
  • 文件重写(rewrite):定期重写AOF文件,达到压缩的目的。

(1)命令追加(append)  内存

Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。

命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。

在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

(2)文件写入(write)和文件同步(sync)

Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:

为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /etc/redis/6379.conf

appendfsync always 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。

appendfsync no:命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。

appendfsync everysecond:命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

(3)文件重写(rewrite)

随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;

过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

文件重写之所以能够压缩AOF文件,原因在于:
  • 过期的数据不再写入文件
  • 无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
  • 多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

文件重写的触发,分为手动触发和自动触发:

手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF

只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作

[root@localhost ~]#vim /etc/redis/6379.conf 

●auto-aof-rewrite-percentage 100  :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
●auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF    


关于文件重写的流程,有两点需要特别注意:

(1)重写由父进程fork子进程进行;

(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

文件重写的流程如下:

(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。 
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。

4.3启动时加载

当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;

只有当AOF关闭时,才会载入RDB文件恢复数据。

当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载

Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。

aof-load-truncated参数默认是开启的。

五、RDB和AOF的优缺点

5.1RDB持久化

优点

  • RDB文件紧凑,体积小,网络传输快,适合全量复制
  • 恢复速度比AOF快很多
  • 当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

缺点

  • RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。
  • 此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)

对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,

                             另一方面,子进程向硬盘写数据也会带来IO压力。

5.2AOF持久化

优点

  • 与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,

缺点

  • 缺点是文件大、恢复速度慢、对性能影响大。

对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。
AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题

相对来说,由于AOF向硬盘中写数据的频率更高,因此对 Redis主进程性能的影响会更大。

RDB持久化和AOF持久化
区别:
1、持久化方式:RDB定时将内存中数据快照,并压缩保存在硬盘;AOF是通过追加的方式,将Redis的写操作命令记录到AOF文件中2、工作方式:
RDB的执行流程:可以手动(bgsave命令),还可以自动触发(①满足save指令配置的条件,②主从复制,从节点首次同步,③执行shutdown时会自动触发),文件名:dump.rdb
AOF的执行流程:命令追加(写命令追加到aof_buf缓冲区),文件写入和同步(appendfsync everysec|always|no),文件名:appendonly.aof;文件重写(定时bgrewriteaof命令手动触发,关闭自动触发操作),减少aof文件占用大小和加快文件恢复速度,执行3、优缺点:
RDB持久化保存的文件占用空间小,网络传输快,恢复比AOF速度快,性能影响也比AOF小;缺点:实时性不如AOF,兼容性较差,持久化期间在fork子进程时会阻塞Redis父进程
AOF持久化的实时性比RDB更好,数据安全性高,支持秒级持久化,并且保存格式为文本格式,兼容性比较好。
缺点:持久化保存的文件占用磁盘空间更大,恢复速度更慢,性能影响也更大,AOF文件重写期间,在fork子进程的时候也会阻塞Redis父进程

总结:

1、RDB 和AOF概念

RDB:周期性的把内存中的数据保存在磁盘中

AOF:从reids 操作日志记录中执行的过程同步磁盘中

2、RDB 和AOF持久化过程

RDB:① 内存中------>写入磁盘中保存的方式

           ②结果数据------>写入磁盘中保存数据对象

           ③内存------>写入磁盘后,会进行压缩,来减 *.rdb 的磁盘占用空间量

AOF:  ①内存中------> append 追加的缓存区 ------>调用cpu资源来写入到磁盘中

          ②操作日志记录中执行的语句------>追加到缓存区------>调用cpu资源来写入到磁盘中

          ③内存------>缓存------>磁盘  写入后 会周期性的重新,跳过一些无效操作来保存

3、RDB和AOF触发方式

RDB:

①手动触发

②自动触发 save m n (假设 save 900 60 则 表示 900s内 60条语句执行,则触发RDB持久化)

③特殊触发:当手动关闭reids时,会进行RDB持久化的方式
/etc/init.d/redis_ 6379 stop l restart

shutdown 关闭时会触发

kill 不会触发

AOF:

①手动触发

②自动触发
 1) always 每条语句,同步执行持久化 (有强制一致性要求的场景)

 2)no  不进行持久化

3)every second 每秒进行一次AOF持久化 (建议使用的,负载均衡的场景)

4、RDB和AOF优先级

前提:

① 因为redis 默认将数据保存在内存中,所以redis重启、关闭时内存中的数据会丢失

②在redis每次启动时,都会读取持久化文件,来恢复数据到内存中,以保证redis数据的完整性

 AOF优先级高于RDB优先级

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/788646.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

将excel数据拆分成多个excel文件

一、背景: 平时在日常工作中,经常需要将excel的文件数据进行拆分,拆分成多个excel文件,然而用人工来处理这个既耗时,又费精力,眼睛会疲劳,时间长了操作上会出现失误,导致数据拆分错…

Redis缓存设计与性能优化【缓存和数据库不一致问题,解决方案:1.加过期时间这样可以一段时间后自动刷新 2.分布式的读写锁】

Redis缓存设计与性能优化 缓存与数据库双写不一致 缓存与数据库双写不一致 在大并发下,同时操作数据库与缓存会存在数据不一致性问题 1、双写不一致情况 2、读写并发不一致 解决方案: 1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等)&a…

Linux系统---进程间通信与管道入门

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂,年薪百万! 一、进程间通信 1.进程间通信的目的 1.数据传输:一个进程需要把他的数据传给另外一个进程。 2.资源共享&…

SAR教程系列7——在cadence中用Spectrum工具FFT仿真ADC的ENOB、SNR等动态性能指标

首先在仿真之前,你得有一个ADC。然后是思考如何仿真的问题,如何加激励,如何使用相关工具查看仿真结果。假定你有一个可以仿真的ADC,大致经过下列步骤可以得到ADC的相关动态性能指标。 第一步:在ADC后面接一个理想的DA…

idea快速找到maven中冲突的依赖,解决依赖冲突

红色实线:冲突,红色虚线:依赖于同一个包的多版本 选择包,右键Excluede,排除 问题原因: 一个项目中需要jar包A和jar包B,而jar包A和jar包B都需要依赖jar包C,但A需要1.2.16版本的C,B需要1.2.17版本的C,这时候就可能会产…

基于MPPT的风力机发电系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1风能与风力发电机模型 4.2风力机功率特性与最大功率点 4.3 MPPT 5.完整工程文件 1.课题概述 基于MPPT的风力机发电系统simulink建模与仿真。MPPT使用S函数编写实现。基于最大功率点跟踪&#xff08…

Python快速入门系列-8(Python数据分析与可视化)

第八章:Python数据分析与可视化 8.1 数据处理与清洗8.1.1 数据加载与查看8.1.2 数据清洗与处理8.1.3 数据转换与整理8.2 数据可视化工具介绍8.2.1 Matplotlib8.2.2 Seaborn8.2.3 Plotly8.3 数据挖掘与机器学习简介8.3.1 Scikit-learn8.3.2 TensorFlow总结在本章中,我们将探讨…

构建第一个ArkTS应用(FA模型)

创建ArkTS工程 若首次打开DevEco Studio,请点击Create Project创建工程。如果已经打开了一个工程,请在菜单栏选择File > New > Create Project来创建一个新工程。选择Application应用开发(本文以应用开发为例,Atomic Servi…

权限管理系统【BUG】

1.1.简介 忙里偷闲,学点Java知识。越发觉得世界语言千千万,最核心的还是思想,一味死记硬背只会让人觉得很死板不灵活,嗯~要灵活~ 1.2.问题 permission.js:37 [Vue warn]: Error in render: "TypeError: Cannot read prope…

Nginx反向代理和缓存

一、Nginx反向代理 1.调度和代理的区别: 1.调度基于内核层面,代理基于应用层面 2.代理必须实现一手托两家 3.调度不需要监听任何端口,不需要工作任何应用程序,代理需要工作和上游服务器一模一样的进程 4.调度没有并发上限&am…

django-haystack,具有全文搜索功能的 Python 库!

目录 前言 安装与配置 全文搜索基础 搜索引擎配置 索引配置 搜索视图与模板 过滤器与排序 自定义搜索逻辑 应用场景 1. 电子商务网站的商品搜索 2. 新闻网站的文章搜索 3. 社交网站的用户搜索 4.企业内部系统的文档搜索 总结 前言 大家好,今天为大家分享…

【项目新功能开发篇】需求分析和开发设计

作者介绍:本人笔名姑苏老陈,从事JAVA开发工作十多年了,带过大学刚毕业的实习生,也带过技术团队。最近有个朋友的表弟,马上要大学毕业了,想从事JAVA开发工作,但不知道从何处入手。于是&#xff0…

vue 加 websocket 聊天

<template><div style="height: 100%; width: 100%; background-color: #fff"><div class="wrap"><!-- 头部 --><div class="titleBox"><imgsrc="@/assets/image/avatar.png"style="argin: 10p…

分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别 目录 分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别分类效果基本介绍模型描述程序…

Vue-Next-Admin:适配手机、平板、PC的开源后台管理模板

摘要&#xff1a;随着移动设备和PC的普及&#xff0c;为了满足不同设备的需求&#xff0c;开发一个能够自适应手机、平板和PC的后台管理系统变得至关重要。本文将介绍一个基于Vue3.x、Typescript、Vite、Element Plus等技术的开源模板库——Vue-Next-Admin&#xff0c;帮助开发…

FebHost:人工智能时代的新宠儿.AI域名

近年来,人工智能技术在各行各业迅猛发展,正在深刻改变着我们的生活。作为AI领域的专属域名,.AI域名正成为越来越多企业和个人的首选。 那么,.AI域名到底是什么呢?它是一种特殊的顶级域名(Top-Level Domain, TLD),于2013年由 安哥拉政府正式退出。与其他通用顶级域名如.com、.…

华为ensp路由器模拟ftp服务器访问

众所周知ensp的pc只有ping功能&#xff0c;ssh、telnet、ftp都无法实现&#xff0c;所以想实现需要更换为路由器 R1需要FTP到server的ftp服务 server的FTP配置就这些命令&#xff0c;主要的是路径&#xff0c;然后在网络可达的情况下就可以进行登录测试了 aaa local-user hu…

【大模型】大模型 CPU 推理之 llama.cpp

【大模型】大模型 CPU 推理之 llama.cpp llama.cpp安装llama.cppMemory/Disk RequirementsQuantization测试推理下载模型测试 参考 llama.cpp 描述 The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide var…

unity 使用Base64编码工具对xml json 或者其他文本进行加密 解密

Base64编码加密解密工具 这是一个加密解密的网页工具&#xff0c;别人可以把他加密后的字符串给你&#xff0c;然后你可以用代码解密出来&#xff0c; 或者自己对内容进行加密&#xff0c;解密处理。 /// <summary>/// Base64 解码/// </summary>string DecodeBase…

基于 NGINX 的 ngx_http_geoip2 模块 来禁止国外 IP 访问网站

基于 NGINX 的 ngx_http_geoip2 模块 来禁止国外 IP 访问网站 一、安装 geoip2 扩展依赖 [rootfxkj ~]# yum install libmaxminddb-devel -y二、下载 ngx_http_geoip2_module 模块 [rootfxkj tmp]# git clone https://github.com/leev/ngx_http_geoip2_module.git三、解压模…