分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别

目录

    • 分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别
      • 分类效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别,经全连接层、softmax层和分类层后将高维特征映射为最终预测结果。
2.数据输入多个特征,输出8个类别,主程序运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

Multihead Attention 多头注意力机制:注意力机制是一种用于在序列数据中学习对不同位置的关注程度的模型。多头注意力机制扩展了传统的注意力机制,允许模型在不同的注意力头上学习不同的关注权重。在多特征分类预测中,多头注意力机制可以用于对不同特征之间的关联进行建模,从而提高分类性能。堆叠3层的TCN残差模块以获取更大范围的输入序列感受野,同时避免出现梯度爆炸和梯度消失等问题每个残差块具有相同的内核大小k,其扩张因子D分别为1、2、4。

模型描述

在这里插入图片描述

BiGRU获取到TCN处理后的数据序列,它将正反两个方向的GRU层连接起来,一个按从前往后(正向)处理输入序列,另一个反向处理。通过这种方式,BiGRU可以更加完整地探索特征的依赖关系,获取上下文关联多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。贝叶斯优化卷积神经网络-长短期记忆网络融合多头注意力机制多变量时间序列预测模型可以更好地处理多变量时间序列数据的复杂性。它可以自动搜索最优超参数配置,并通过卷积神经网络提取局部特征,利用LSTM网络建模序列中的长期依赖关系,并借助多头注意力机制捕捉变量之间的关联性,从而提高时间序列预测的准确性和性能。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 设置训练选项
options = trainingOptions('adam', ...            % 使用Adam优化器'MiniBatchSize', 15, ...                     % 每个迭代的迷你批次大小'MaxEpochs', 5, ...                          % 最大训练迭代次数'InitialLearnRate', 0.001, ...               % 初始学习率'Shuffle', 'every-epoch', ...                % 每个迭代都对数据进行洗牌'Verbose', false, ...                        % 不显示训练过程中的详细输出'Plots', 'training-progress');               % 显示训练进度图

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/788629.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue-Next-Admin:适配手机、平板、PC的开源后台管理模板

摘要:随着移动设备和PC的普及,为了满足不同设备的需求,开发一个能够自适应手机、平板和PC的后台管理系统变得至关重要。本文将介绍一个基于Vue3.x、Typescript、Vite、Element Plus等技术的开源模板库——Vue-Next-Admin,帮助开发…

FebHost:人工智能时代的新宠儿.AI域名

近年来,人工智能技术在各行各业迅猛发展,正在深刻改变着我们的生活。作为AI领域的专属域名,.AI域名正成为越来越多企业和个人的首选。 那么,.AI域名到底是什么呢?它是一种特殊的顶级域名(Top-Level Domain, TLD),于2013年由 安哥拉政府正式退出。与其他通用顶级域名如.com、.…

华为ensp路由器模拟ftp服务器访问

众所周知ensp的pc只有ping功能,ssh、telnet、ftp都无法实现,所以想实现需要更换为路由器 R1需要FTP到server的ftp服务 server的FTP配置就这些命令,主要的是路径,然后在网络可达的情况下就可以进行登录测试了 aaa local-user hu…

【大模型】大模型 CPU 推理之 llama.cpp

【大模型】大模型 CPU 推理之 llama.cpp llama.cpp安装llama.cppMemory/Disk RequirementsQuantization测试推理下载模型测试 参考 llama.cpp 描述 The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide var…

unity 使用Base64编码工具对xml json 或者其他文本进行加密 解密

Base64编码加密解密工具 这是一个加密解密的网页工具&#xff0c;别人可以把他加密后的字符串给你&#xff0c;然后你可以用代码解密出来&#xff0c; 或者自己对内容进行加密&#xff0c;解密处理。 /// <summary>/// Base64 解码/// </summary>string DecodeBase…

基于 NGINX 的 ngx_http_geoip2 模块 来禁止国外 IP 访问网站

基于 NGINX 的 ngx_http_geoip2 模块 来禁止国外 IP 访问网站 一、安装 geoip2 扩展依赖 [rootfxkj ~]# yum install libmaxminddb-devel -y二、下载 ngx_http_geoip2_module 模块 [rootfxkj tmp]# git clone https://github.com/leev/ngx_http_geoip2_module.git三、解压模…

55、美国德克萨斯大学奥斯汀分校、钱德拉家族电气与计算机工程系:通过迁移学习解决BCI个体差异性[不得不说,看技术还得是老美]

2024年2月5日跨被试最新文章&#xff1a; 德州州立大学奥斯汀分校研究团队最近的一项研究成果&#xff0c;通过非侵入式的脑机接口&#xff0c;可以让被试不需要任何校准就可以使用脑机接口设备&#xff0c;这意味着脑机接口具备了大规模被使用的潜力。 一般来说&#xff0c;…

UE4 方块排序动画

【动画效果】 入动画&#xff1a; 出动画&#xff1a; 【分析】 入动画&#xff1a;方块动画排序方式为Z字形&#xff0c;堆砌方向为X和Y轴向 出动画&#xff1a;方块动画排序方式为随机 【关键蓝图】 1.构建方块砌体 2.入/出动画

人工智能+的广泛应用,已渗透到生活的方方面面

引言 随着科技的不断进步和人工智能技术的快速发展&#xff0c;我们正处于一个人工智能时代。人工智能不仅仅是一种技术&#xff0c;更是一种革命性的变革力量&#xff0c;它正在以前所未有的方式改变着我们的生活和工作方式。 人工智能&#xff08;AI&#xff09;指的是人工…

【容易不简单】love 2d Lua 俄罗斯方块超详细教程

源码已经更新在CSDN的码库里&#xff1a; git clone https://gitcode.com/funsion/love2d-game.git 一直在找Lua 能快速便捷实现图形界面的软件&#xff0c;找了一堆&#xff0c;终于发现love2d是小而美的原生lua图形界面实现的方式。 并参考相关教程做了一个更详细的&#x…

某音乐平台歌曲信息逆向之webpack扣取

逆向网址 aHR0cHM6Ly95LnFxLmNvbS8 逆向链接 aHR0cHM6Ly95LnFxLmNvbS9uL3J5cXEvc29uZ0RldGFpbC8wMDJkdzRndjFabWlHdA 逆向接口 aHR0cHM6Ly91Ni55LnFxLmNvbS9jZ2ktYmluL211c2ljcy5mY2c 逆向过程 请求方式&#xff1a;POST 逆向参数 sign zzbd8c72309rdslvlnjwk8pthj2lw462f12…

ubuntu-server部署hive-part3-安装mysql

参照 https://blog.csdn.net/qq_41946216/article/details/134345137 操作系统版本&#xff1a;ubuntu-server-22.04.3 虚拟机&#xff1a;virtualbox7.0 部署mysql 下载上传 下载地址 https://downloads.mysql.com/archives/community/ 以root用户上传&#xff0c;/usr/loc…

Three.js阴影贴图

生成阴影贴图的步骤如下&#xff1a; 从光位置视点&#xff08;阴影相机&#xff09;创建深度图。从相机的角度进行屏幕渲染在每个像素点&#xff0c;将阴影相机的MVP矩阵计算出的深度值与深度图值进行比较如果深度图值较低&#xff0c;则说明该像素点存在阴影 &#xff0c;因…

隐私计算实训营第七讲-隐语SCQL的架构详细拆解

隐私计算实训营第七讲-隐语SCQL的架构详细拆解 文章目录 隐私计算实训营第七讲-隐语SCQL的架构详细拆解1.SCQL Overview1.1 多方数据分析场景1.2 多方数据分析技术路线1.2.1 TEE SQL方案1.2.2 MPC SQL方案 1.3 Secure Collaborative Query Language(SCQL)1.3.1 SCQL 系统组件1.…

rust项目组织结构和集成测试举例

概述 在学习rust的过程中&#xff0c;当项目结构略微复杂的时候&#xff0c;写集成测试的时候发现总是不能引用项目中的代码&#xff0c;导致编写测试用例失败。查阅了教程&#xff0c;一般举例都很简单。查阅了谷歌和百度以及ai&#xff0c;也没有找到满意的答案。这里记录一…

用户体验:探讨Facebook如何优化用户体验

在数字化时代&#xff0c;用户体验是社交媒体平台成功与否的关键因素之一。作为全球最大的社交媒体平台之一&#xff0c;Facebook一直在努力优化用户体验&#xff0c;从功能设计到内容呈现再到隐私保护&#xff0c;不断提升用户满意度。本文将深入探讨Facebook如何优化用户体验…

【EasyExcel】—— 实现excel动态表头设置、多个sheet

引入jar <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.0</version></dependency>代码 public static void main(String[] args) {//选择存储地址String fileName "/User…

Linux基础概念

Linux Linux 和 UNIX 中的文件系统是一个以 / 为根的树状式文件结构&#xff0c;/ 是 Linux 和 UNIX 中的根目录&#xff0c;同样它也是文件系统的起点。所有的文件和目录都位于 / 路径下&#xff0c;包括经常听到的 /usr、/etc、/bin、/home 等。在早期的 UNIX 系统中&#x…

论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

文章目录 RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection问题笛卡尔坐标结构图Meta-Kernel Convolution RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection 论文&#xff1a;https://arxiv.org/pdf/2103.10039.pdf 代码&…

数据结构初阶:顺序表和链表

线性表 线性表 ( linear list ) 是 n 个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使 用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串 ... 线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的, 线性…