Linux多进程通信(1)——无名管道及有名管道使用例程

管道是半双工通信,如果需要 双向通信,则需要建立两个管道,
无名管道:只能父子进程间通信,且是非永久性管道通信结构,当它访问的进程全部终止时,管道也随之被撤销
有名管道:进程间不需要有亲缘关系,是永久性管道通信结构,直到pclose才被关闭。(提供了一个路径名,以FIFO的形式存在于文件系统)

1.有名管道

int mkfifo(const char *pathname, mode_t mode);

有名管道创建完毕后,直接使用系统调用来操作即可进行读写等操作,同时也可以使用mkfifo(shell命令),来进行管道创建
打开管道:open
关闭管道:close
读数据:read
写数据:write

2.无名管道

2.1 pipe

pipefd为数组指针,传出的fd[0]为读管道,fd[1]为写管道
写端需要关闭读管道,也就是fd[0],读端需要 关闭写通道,也就是fd[1]

#include <unistd.h>
int pipe(int pipefd[2]);

在这个例子中,创建管道1、管道2后,进行fork操作。在父进程中,关闭管道1的读管道,关闭管道2的写管道。在子进程中则相反,最终达到管道1,父写子读,管道2,父读子写的效果

#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define LINE 1024int main(int argc, char **argv)
{int fd1[2], fd2[2];pid_t pid;int num;char buf[LINE];if (pipe(fd1) < 0) {printf("pipe fd1 error\n");return -1;}if (pipe(fd2) < 0) {printf("pipe fd2 error\n");return -1;}printf("prepare fork\n");pid = fork();if (pid < 0) {printf("fork error\n");} else if (pid > 0) {printf("prepare fork1\n");//父进程:返回子进程IDclose(fd1[0]);  //管道1,父写子读。 管道2,父读子写close(fd2[1]); char *str = "hello, this data is parent write by pipe1\n";write(fd1[1], str, strlen(str));num = read(fd2[0], buf, LINE);write(STDOUT_FILENO, buf, num);} else {printf("prepare fork2\n");//子进程:返回0close(fd1[1]);  //管道1,父写子读。 管道2,父读子写close(fd2[0]);num = read(fd1[0], buf, LINE);write(STDOUT_FILENO, buf, num);char *str2 = "hello, this data is child write by pipe2\n";write(fd2[1], str2, strlen(str2));}exit(0);
}

最终输出如下:
image.png

2.2 基于pipe的popen

常用的popen和pclose,其实就是基于无名管道进行的封装,感兴趣的可以看下源码,libc的各个版本有细微差异,但总体思路是一致的,然后工作中也经常用到popen封装的接口。相比system这个方式要更为安全,可以看另外一篇博客:

FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);

在使用popen后,不用管道时要调用pclose将管道关闭

2.3 自己实现的基于popen读取命令输出函数

bool LinuxPopenExecCmd(std::string &strOutData, const char * pFormat, ...)
{char acBuff[128] ={0};va_list ap;int ret = -1;va_start(ap, pFormat);ret = vsprintf(acBuff, pFormat, ap);va_end(ap);FILE *pFile = popen(acBuff, "r");if (NULL == pFile){return false;}char acValue[1024] = {0};while(fgets(acValue, sizeof(acValue), pFile) != NULL){strOutData += acValue;}pclose(pFile);return true;
}
// 使用时直接这样使用即可,非常方便,并且支持格式化输入命令
std::string strValue;
LinuxPopenExecCmd(strValue, "ls -l"):
LinuxPopenExecCmd(strValue, "ls -l %s", "/tmp/"):

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/787354.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RK3568驱动指南|第十四篇 单总线-第162章DS18B20驱动读时序编写

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…

Golang 开发实战day06 - Boolean Conditional

Golang 教程06 - Boolean & Conditional 1. Boolean & Conditional 1.1 什么是布尔类型&#xff1f; 想象一下&#xff0c;你正在玩一个古老的游戏&#xff0c;只有两个选项&#xff1a;是或否。在 Golang 中&#xff0c;这就是布尔类型&#xff0c;用 bool 关键字表…

【Linux实验室】DNS域名解析服务——超详细实验操作!

DNS域名解析 DNS域名解析服务——超详细实验操作&#xff01;&#xff01;&#xff01;序言DNS 基本概述分布式、层次数据库DNS 层次结构DNS 查询步骤DNS 查询类型DNS服务器类型DNS 缓存反向 DNS 查询如何检查 DNS 记录是否生效 Bind解析服务Bind简介bind的服务类型 DNS域名解析…

深入解析实时数仓Doris:Rollup上卷表与查询

码到三十五 &#xff1a; 个人主页 心中有诗画&#xff0c;指尖舞代码&#xff0c;目光览世界&#xff0c;步履越千山&#xff0c;人间尽值得 ! 目录 一、基本概念二、Aggregate 和 Unique 模型中的 ROLLUP三、Duplicate 模型中的 ROLLUP四、ROLLUP 调整前缀索引五、ROLLUP使…

【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

写在前面 关于数据科学环境的建立&#xff0c;可以参考我的博客&#xff1a; 【深耕 Python】Data Science with Python 数据科学&#xff08;1&#xff09;环境搭建 往期数据科学博文&#xff1a; 【深耕 Python】Data Science with Python 数据科学&#xff08;2&#xf…

每日面经分享(pytest测试案例,接口断言,多并发断言)

pytest对用户登录接口进行自动化脚本设计 a. 创建一个名为"test_login.py"的测试文件&#xff0c;编写以下测试脚本 import pytest import requests# 测试用例1&#xff1a;验证登录成功的情况 # 第一个测试用例验证登录成功的情况&#xff0c;发送有效的用户名和密…

iOS系统文件备份与还原:保护和管理手机中的关键数据

​ 目录 引言 用户登录工具和连接设备 查看设备信息&#xff0c;电池信息 查看硬盘信息 硬件信息 查看 基带信息 销售信息 电脑可对手机应用程序批量操作 运行APP和查看APP日志 IPA包安装测试 注意事项 引言 苹果手机与安卓手机不同&#xff0c;无法直接访问系统文件…

Chatgpt掘金之旅—有爱AI商业实战篇|文案写作|(三)

演示站点&#xff1a; https://ai.uaai.cn 对话模块 官方论坛&#xff1a; www.jingyuai.com 京娱AI 一、前言 人工智能&#xff08;AI&#xff09;技术作为当今科技创新的前沿领域&#xff0c;为创业者提供了广阔的机会和挑战。随着AI技术的快速发展和应用领域的不断拓展&…

是否应该升级到ChatGPT 4.0?深度对比ChatGPT 3.5与4.0的差异

如果只是想简单地体验AI的魅力&#xff0c;感受大模型的独特之处&#xff0c;或是玩一玩文字游戏&#xff0c;那么升级至ChatGPT 4.0可能并非必需。然而&#xff0c;若你期望将AI作为提升工作学习效率的得力助手&#xff0c;那么我强烈建议你升级到ChatGPT 4.0。 如果你不知道…

Linux和Windows安装PHP依赖管理工具Composer

Composer 是 PHP 的一个依赖管理工具。它允许申明项目所依赖的代码库&#xff0c;会在项目中安装它们。 Composer 不是一个包管理器。是的&#xff0c;它涉及 "packages" 和 "libraries"&#xff0c;但它在每个项目的基础上进行管理&#xff0c;在你项目的…

【Springboot整合系列】SpringBoot整合WebService

目录 Web服务介绍Web服务的两种类型Web服务架构Web服务的主要特点Web服务使用场景Web服务标准和技术 WebService介绍WebService的作用适用场景不适用场景 WebService的原理三个角色相关概念 WebService开发框架代码实现服务端1.引入依赖2.实体类3.业务层接口接口实现类 4.配置类…

python对接百度云车牌识别

注册百度智能云&#xff0c;选择产品服务。 https://console.bce.baidu.com/ 每天赠送200次&#xff0c;做开发测试足够了。 在应用列表复制 AppID , API Key ,Secret Key 备用。 SDK下载地址 https://ai.baidu.com/sdk#ocr 下载SDK文件&#xff0c;解压&#xff0c;…

matlab中旋转矩阵函数

文章目录 matlab里的旋转矩阵、四元数、欧拉角四元数根据两向量计算向量之间的旋转矩阵和四元数欧拉角转旋转矩阵旋转矩阵转欧拉角旋转矩阵转四元数参考链接 matlab里的旋转矩阵、四元数、欧拉角 旋转矩阵dcmR四元数quatq[q0,q1,q2,q3]欧拉角angle[row,pitch,yaw] % 旋转矩阵…

前端跨页面通信方案介绍

在浏览器中&#xff0c;我们可以同时打开多个Tab页&#xff0c;每个Tab页可以粗略理解为一个“独立”的运行环境&#xff0c;即使是全局对象也不会在多个Tab间共享。然而有些时候&#xff0c;我们希望能在这些“独立”的Tab页面之间同步页面的数据、信息或状态。这就是本文说说…

算法学习——LeetCode力扣动态规划篇2(343. 整数拆分、96. 不同的二叉搜索树、416. 分割等和子集、1049. 最后一块石头的重量 II)

算法学习——LeetCode力扣动态规划篇2 343. 整数拆分 343. 整数拆分 - 力扣&#xff08;LeetCode&#xff09; 描述 给定一个正整数 n &#xff0c;将其拆分为 k 个 正整数 的和&#xff08; k > 2 &#xff09;&#xff0c;并使这些整数的乘积最大化。 返回 你可以获得…

构建第一个JS应用(FA模型)

创建JS工程 若首次打开DevEco Studio&#xff0c;请点击Create Project创建工程。如果已经打开了一个工程&#xff0c;请在菜单栏选择File > New > Create Project来创建一个新工程。选择Application应用开发&#xff08;本文以应用开发为例&#xff0c;Atomic Service对…

【网络基础】一文搞懂,什么是三次握手与四次挥手

文章目录 三次握手过程为什么要三次握手而不是两次握手呢&#xff1f; 四次挥手过程为什么客户端需要等待超时时间&#xff1f;为什么要四次挥手&#xff1f; 参考 三次握手过程 当客户端向服务端发起连接时&#xff0c;会先发一包 SYN 包连接请求数据&#xff0c;进行询问&am…

【智能算法】蜣螂优化算法(DBO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2022年&#xff0c;Xue等人受到自然界中蜣螂生存行为启发&#xff0c;提出了蜣螂优化算法&#xff08;Dung beetle optimizer, DBO&#xff09;。 2.算法原理 2.1算法思想 DBO模拟了自然界蜣螂种…

基于8086温度监控报警系统设计

**单片机设计介绍&#xff0c;基于8086温度监控报警系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于8086的温度监控报警系统设计概要主要涵盖了该系统的基本组成、工作原理、设计特点以及应用前景等方面。以下是对该…

HarmonyOS 应用开发之RelationalStore开发

场景介绍 RelationalStore提供了一套完整的对本地数据库进行管理的机制&#xff0c;对外提供了一系列的增、删、改、查等接口&#xff0c;也可以直接运行用户输入的SQL语句来满足复杂的场景需要。 基本概念 谓词&#xff1a;数据库中用来代表数据实体的性质、特征或者数据实体…