【深耕 Python】Data Science with Python 数据科学(7)书352页练习题

写在前面

关于数据科学环境的建立,可以参考我的博客:

【深耕 Python】Data Science with Python 数据科学(1)环境搭建

往期数据科学博文:

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

【深耕 Python】Data Science with Python 数据科学(3)Numpy 常量、函数和线性空间

【深耕 Python】Data Science with Python 数据科学(4)(书337页)练习题及解答

【深耕 Python】Data Science with Python 数据科学(5)Matplotlib可视化(1)

【深耕 Python】Data Science with Python 数据科学(6)Matplotlib可视化(2)

代码说明: 由于实机运行的原因,可能省略了某些导入(import)语句。

Question 1

Add a title and axis labels to the plot shown in Figure 11.15.

# ex 1
import matplotlib.pyplot as plt
y = 5 * x + rng.standard_normal(n_pts)
fig, ax = plt.subplots()
ax.scatter(x, y)
plt.title("linear function f(x, y)", fontsize=16)
plt.xlabel("X", fontsize=16)
plt.ylabel("Y", fontsize=16)
plt.grid()
plt.show()

输出的图像:

在这里插入图片描述

Question 2

Add titles to the histograms in Section 11.3.3.

Answer 1

# ex 2
values = rng.standard_normal(1000)
fig, ax = plt.subplots()
ax.hist(values)
plt.title("histogram_1")
plt.grid()
plt.show()

输出的图像:

在这里插入图片描述

Answer 2

fig, ax = plt.subplots()
ax.hist(values, bins=20)
plt.title("histogram_2")
plt.grid()
plt.show()

输出的图像:

在这里插入图片描述

Question 3

One common plotting task is including multiple subplots in the same figure. Show that the code in Listing 11.10 creates vertically stacked subplots, as shown in Figure 11.18. (Here the suptitle() method produces a “supertitle” that sits above both plots. See the Matplotlib documentation on subplots for other ways to create multiple subplots.)

# ex 3
import numpy as np
from math import tau
x = np.linspace(0, tau, 100)
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle(r"Vertically stacked plots of $\cos(\theta)$ and $\sin(\theta)$.")
ax1.grid()
ax1.plot(x, np.cos(x))
ax2.grid()
ax2.plot(x, np.sin(x))

输出的图像:

在这里插入图片描述

Question 4

Add a plot of the function cos(x - t/8) to the plot in Figure 11.14 with color “orange” and linestyle “dashdot”. Extra credit: Add an annotation as well. (The extra-credit step is much easier in an interactive Jupyter notebook, especially when finding the right coordinates for the annotation label and arrow.)


#%%
# ex 4
from math import tau
import numpy as np
import matplotlib.pyplot as pltx = np.linspace(0, tau, 100)fig, ax = plt.subplots()ax.set_xticks([0, tau / 4, tau / 2, 3 * tau / 4, tau])
ax.set_yticks([-1, -1 / 2, 0, 1 / 2, 1])
plt.grid()ax.set_xticklabels([r'$0$', r'$\tau/4$', r'$\tau/2$', r'$3\tau/4$', r'$\tau$'])
ax.set_yticklabels([r'$-1$', r'$-1/2$', r'$0$', r'$1/2$', r'$1$'])ax.set_title("One period of cosine and sine", fontsize=16)
ax.set_xlabel(r"$\theta$", fontsize=16)
ax.set_ylabel(r"$f(\theta)$", fontsize=16)ax.annotate(r"$\cos(\theta)$", xy=(1.75, -0.3), xytext=(0.5, -0.75), arrowprops={"facecolor": "black", "width": 1},fontsize=16)
ax.annotate(r"$\sin(\theta)$", xy=(2.75, 0.5), xytext=(3.5, 0.75), arrowprops={"facecolor": "black", "width": 1},fontsize=16)
ax.annotate(r"$\cos(\theta - 2\pi / 8)$", xy=(1.83, 0.5), xytext=(1.0, 0.75), arrowprops={"facecolor": "black", "width": 1},fontsize=16)
fig.set_dpi(150)ax.plot(x, np.cos(x), color="red", linestyle="dashed")
ax.plot(x, np.sin(x), color="blue", linestyle="dotted")
ax.plot(x, np.cos(x - tau / 8), color="orange", linestyle="dashdot")
plt.show()

输出的图像:

在这里插入图片描述

参考文献 Reference

《Learn Enough Python to be Dangerous——Software Development, Flask Web Apps, and Beginning Data Science with Python》, Michael Hartl, Boston, Pearson, 2023.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/787346.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android 使用LeakCanary检测内存泄漏,分析原因

内存泄漏是指无用对象(不再使用的对象)持续占有内存或无用对象的内存得不到及时释放,从而造成内存空间的浪费称为内存泄漏。 平时我们在使用app时,少量的内存泄漏我们是发现不了的,但是当内存泄漏达到一定数量时&…

每日面经分享(pytest测试案例,接口断言,多并发断言)

pytest对用户登录接口进行自动化脚本设计 a. 创建一个名为"test_login.py"的测试文件,编写以下测试脚本 import pytest import requests# 测试用例1:验证登录成功的情况 # 第一个测试用例验证登录成功的情况,发送有效的用户名和密…

统计数码出现的个数

题目描述 输入一个数n,求出 [1, n] 中每个数码出现的次数,即0 - 9每个数出现的次数。 解题思路 首先是无情的暴力法,可以用于判断我们后续的优化代码是否正确。 import java.io.*; import java.util.*;public class Main1 {static int n;p…

iOS系统文件备份与还原:保护和管理手机中的关键数据

​ 目录 引言 用户登录工具和连接设备 查看设备信息,电池信息 查看硬盘信息 硬件信息 查看 基带信息 销售信息 电脑可对手机应用程序批量操作 运行APP和查看APP日志 IPA包安装测试 注意事项 引言 苹果手机与安卓手机不同,无法直接访问系统文件…

Chatgpt掘金之旅—有爱AI商业实战篇|文案写作|(三)

演示站点: https://ai.uaai.cn 对话模块 官方论坛: www.jingyuai.com 京娱AI 一、前言 人工智能(AI)技术作为当今科技创新的前沿领域,为创业者提供了广阔的机会和挑战。随着AI技术的快速发展和应用领域的不断拓展&…

#设计模式#4.6 Flyweight(享元) 对象结构型模式

享元模式是一种结构型设计模式,其主要目标是通过共享大量细粒度的对象来节省内存。享元模式的关键在于区分内部状态(Intrinsic State)和外部状态(Extrinsic State)。 内部状态是对象可共享的部分,通常是对…

是否应该升级到ChatGPT 4.0?深度对比ChatGPT 3.5与4.0的差异

如果只是想简单地体验AI的魅力,感受大模型的独特之处,或是玩一玩文字游戏,那么升级至ChatGPT 4.0可能并非必需。然而,若你期望将AI作为提升工作学习效率的得力助手,那么我强烈建议你升级到ChatGPT 4.0。 如果你不知道…

Linux和Windows安装PHP依赖管理工具Composer

Composer 是 PHP 的一个依赖管理工具。它允许申明项目所依赖的代码库,会在项目中安装它们。 Composer 不是一个包管理器。是的,它涉及 "packages" 和 "libraries",但它在每个项目的基础上进行管理,在你项目的…

【Springboot整合系列】SpringBoot整合WebService

目录 Web服务介绍Web服务的两种类型Web服务架构Web服务的主要特点Web服务使用场景Web服务标准和技术 WebService介绍WebService的作用适用场景不适用场景 WebService的原理三个角色相关概念 WebService开发框架代码实现服务端1.引入依赖2.实体类3.业务层接口接口实现类 4.配置类…

python对接百度云车牌识别

注册百度智能云,选择产品服务。 https://console.bce.baidu.com/ 每天赠送200次,做开发测试足够了。 在应用列表复制 AppID , API Key ,Secret Key 备用。 SDK下载地址 https://ai.baidu.com/sdk#ocr 下载SDK文件,解压,…

matlab中旋转矩阵函数

文章目录 matlab里的旋转矩阵、四元数、欧拉角四元数根据两向量计算向量之间的旋转矩阵和四元数欧拉角转旋转矩阵旋转矩阵转欧拉角旋转矩阵转四元数参考链接 matlab里的旋转矩阵、四元数、欧拉角 旋转矩阵dcmR四元数quatq[q0,q1,q2,q3]欧拉角angle[row,pitch,yaw] % 旋转矩阵…

前端跨页面通信方案介绍

在浏览器中,我们可以同时打开多个Tab页,每个Tab页可以粗略理解为一个“独立”的运行环境,即使是全局对象也不会在多个Tab间共享。然而有些时候,我们希望能在这些“独立”的Tab页面之间同步页面的数据、信息或状态。这就是本文说说…

算法学习——LeetCode力扣动态规划篇2(343. 整数拆分、96. 不同的二叉搜索树、416. 分割等和子集、1049. 最后一块石头的重量 II)

算法学习——LeetCode力扣动态规划篇2 343. 整数拆分 343. 整数拆分 - 力扣(LeetCode) 描述 给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k > 2 ),并使这些整数的乘积最大化。 返回 你可以获得…

构建第一个JS应用(FA模型)

创建JS工程 若首次打开DevEco Studio,请点击Create Project创建工程。如果已经打开了一个工程,请在菜单栏选择File > New > Create Project来创建一个新工程。选择Application应用开发(本文以应用开发为例,Atomic Service对…

openGauss 分布式数据库能力

分布式数据库能力 可获得性 本特性自openGauss 2.1.0版本开始引入。 特性简介 基于分布式中间件shardingsphere使openGauss具备分布式数据库能力。使用32个鲲鹏920(128核)节点组网(1*shardingsphere-proxy ,11*shardingsphere-jdbc,20*openGauss)时,完美shardin…

【网络基础】一文搞懂,什么是三次握手与四次挥手

文章目录 三次握手过程为什么要三次握手而不是两次握手呢? 四次挥手过程为什么客户端需要等待超时时间?为什么要四次挥手? 参考 三次握手过程 当客户端向服务端发起连接时,会先发一包 SYN 包连接请求数据,进行询问&am…

【智能算法】蜣螂优化算法(DBO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2022年,Xue等人受到自然界中蜣螂生存行为启发,提出了蜣螂优化算法(Dung beetle optimizer, DBO)。 2.算法原理 2.1算法思想 DBO模拟了自然界蜣螂种…

基于8086温度监控报警系统设计

**单片机设计介绍,基于8086温度监控报警系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于8086的温度监控报警系统设计概要主要涵盖了该系统的基本组成、工作原理、设计特点以及应用前景等方面。以下是对该…

HarmonyOS 应用开发之RelationalStore开发

场景介绍 RelationalStore提供了一套完整的对本地数据库进行管理的机制,对外提供了一系列的增、删、改、查等接口,也可以直接运行用户输入的SQL语句来满足复杂的场景需要。 基本概念 谓词:数据库中用来代表数据实体的性质、特征或者数据实体…

HTTP响应头和请求头信息对照

HTTP请求头提供了关于请求,响应或者其他的发送实体的信息。HTTP的头信息包括通用头、请求头、响应头和实体头四个部分。每个头域由一个域名,冒号(:)和域值三部分组成。 通用头标:即可用于请求,也可用于响应…