【Leetcode】top 100 二分查找

35 搜索插入位置

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。请必须使用时间复杂度为 O(log n) 的算法。

基础写法!!!牢记!!!

第一个只适用与一个目标值的情况,第二个适用于多个目标值靠左取的情况(要靠右取可以找target+1获得下标值-1);

class Solution(object):def searchInsert(self, nums, target):""":type nums: List[int]:type target: int:rtype: int"""left, right = 0, len(nums)-1while left <= right:mid = (left+right)//2if target == nums[mid]:return midelif target < nums[mid]:right = mid-1else:left = mid+1return leftdef lower_bound(nums, target):left, right = 0, len(nums) - 1  # 闭区间 [left, right]while left <= right: mid = (left + right) // 2if nums[mid] < target:left = mid + 1         # 范围缩小到 [mid+1, right]else:right = mid - 1        # 范围缩小到 [left, mid-1]return left
 74 搜索二维矩阵

给你一个满足下述两条属性的 m x n 整数矩阵:

  • 每行中的整数从左到右按非严格递增顺序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。

方法一:二分先找列再找行    定列的时候要靠近小值(取down)

              或者将二维矩阵拉成一维矩阵然后同题35      时间复杂度相同O(logm+logn)

class Solution(object):def searchMatrix(self, matrix, target):""":type matrix: List[List[int]]:type target: int:rtype: bool"""up, down = 0, len(matrix)-1while up <= down:mid = (up+down)//2if target == matrix[mid][0]: return Trueelif target < matrix[mid][0]:down = mid-1else:up = mid+1left, right = 0, len(matrix[0])-1while left <= right:mid = (left+right)//2if target == matrix[down][mid]: return Trueelif target < matrix[down][mid]:right = mid-1else:left = mid+1return False

方法二:满足题目规定的二维矩阵可以看成一棵二叉搜索树    时间复杂度O(m+n)

class Solution:def searchMatrix(self, matrix, target):m, n = len(matrix), len(matrix[0])x, y = 0, n - 1while x < m and y >= 0:if matrix[x][y] > target:y -= 1elif matrix[x][y] < target:x += 1else:return Truereturn False
34 在排序数组中查找元素的第一个和最后一个位置

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。如果数组中不存在目标值 target,返回 [-1, -1]。你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

两遍二分查找,第一遍找target,第二遍找target+1,都靠左取;

不存在目标值情况:目标值过小/大,idx1=0/len(nums)

                                 目标值没出现:nums[idx1] != target    (可以和idx1=0合并)

class Solution(object):def searchRange(self, nums, target):""":type nums: List[int]:type target: int:rtype: List[int]"""left, right = 0, len(nums)-1while left <= right:mid = (left+right)//2if nums[mid] < target:left = mid+1else:right = mid-1idx1 = leftleft, right = 0, len(nums)-1while left <= right:mid = (left+right)//2if nums[mid] < target+1:left = mid+1else:right = mid-1idx2 = left-1if idx1 == len(nums) or nums[idx1] != target: return [-1, -1]else: return [idx1, idx2]
33 搜索旋转排列数组

整数数组 nums 按升序排列,数组中的值 互不相同 。在传递给函数之前,nums 在预先未知的某个下标 k0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

二分出一侧排序正确的区域,若target在这个区域里,正常查找,若在排序不正确的区域里,继续二分;

因为目标值仅出现一次,可提前判断;

找不到递增区间时终止循环;

class Solution(object):def search(self, nums, target):""":type nums: List[int]:type target: int:rtype: int"""left, right = 0, len(nums)-1while left <= right:mid = (left+right)//2if nums[mid] == target: return midelif nums[left] == target: return leftelif nums[right] == target: return rightif nums[left] < nums[mid] :    # [left, mid]排序正确if nums[mid] > target and nums[left] < target:    # target在[left, mid]内  right = mid - 1else:left = mid + 1         elif nums[mid] < nums[right]:  # [mid, right]排序正确if nums[mid] < target and nums[right] > target:   # target在[mid, right]内  left = mid + 1else:right = mid - 1 else:return -1if not nums or nums[left] != target: return -1else: return left
153 寻找排序数组中的最小值

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:

  • 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
  • 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]

注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。

给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

假设旋转k次,则数组为 [a[n-k],a[n-k+1],...,a[0],...,a[n-k-1]] 一次二分

情况一:nums[left] < nums[mid] < nums[right] 最小值为 nums[left]

情况二:若左侧排序正确最小值只可能在右侧区间  搜索区间为[mid+1,right]

情况三:同理右侧排序正确则最小值只可能在左侧区间 搜索区间为[left,mid]   注意mid是右侧排序正确区间的最小值,也要放在搜索范围里;

当找不到递增序列时,取两个数的最小值;

class Solution(object):def findMin(self, nums):""":type nums: List[int]:rtype: int"""left, right = 0, len(nums)-1while left <= right:mid = (left+right)//2if nums[left] < nums[mid] and nums[mid] < nums[right]:return nums[left]elif nums[left] < nums[mid] and nums[mid] > nums[right]:    # [left, mid]排序正确left = mid + 1      elif nums[left] > nums[mid] and nums[mid] < nums[right]:  # [mid, right]排序正确right = mid else:return min(nums[left], nums[right])
4 寻找两个正序数组的中位数

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。算法的时间复杂度应该为 O(log (m+n)) 。

方法一:合并两个有序数组后取中间位置的元素;                     时间复杂度O(m+n) 空间复杂度O(m+n)

将问题转换为两个有序数组中取第k小的数    k=(m+n)/2 or (m+n)/2+1

方法二:使用双指针,每次移动较小值的指针至移动k次;         时间复杂度O(m+n) 空间复杂度O(1)

方法三: 比较nums1[k/2-1]和nums2[k/2-1],对于二者中的较小值(假设nums1[k/2-1]),其在合并数组中的下标一定小于(k/2-1)*2+1<k,就不可能是目标值,此时nums1[0:k/2]也不可能含有目标值;随后根据排除掉的长度更新k后继续循环;

终止条件:某个数组为[ ],直接返回另一个数组的第k个元素;

                  k=1,直接取两数组第一个元素的最小值;

class Solution(object):def findMedianSortedArrays(self, nums1, nums2):""":type nums1: List[int]:type nums2: List[int]:rtype: float"""def getKthElement(k):index1, index2 = 0, 0while True:# 特殊情况if index1 == m:return nums2[index2 + k - 1]if index2 == n:return nums1[index1 + k - 1]if k == 1:return min(nums1[index1], nums2[index2])# 正常情况newIndex1 = min(index1 + k // 2 - 1, m - 1)        # 防止越界newIndex2 = min(index2 + k // 2 - 1, n - 1)pivot1, pivot2 = nums1[newIndex1], nums2[newIndex2]if pivot1 <= pivot2:k -= newIndex1 - index1 + 1index1 = newIndex1 + 1else:k -= newIndex2 - index2 + 1index2 = newIndex2 + 1m, n = len(nums1), len(nums2)totalLength = m + nif totalLength % 2 == 1:return getKthElement((totalLength + 1) // 2)else:return (getKthElement(totalLength // 2) + getKthElement(totalLength // 2 + 1)) / 2.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/787288.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

清华学霸引爆“长文本”大战,大模型的应用前景清晰了吗?

文 | 智能相对论 作者 | 沈浪 Long-LLM&#xff08;长文本大模型&#xff09;时代似乎来得有些突然&#xff0c;而引爆这场热潮的&#xff0c;竟是一家由清华学霸牵头的本土AI初创企业。 前不久&#xff0c;月之暗面&#xff08;Moonshot AI&#xff09;公司宣布旗下对话式 …

linux 环境安装配置

安装java17 1.下载安装包 wget https://download.oracle.com/java/17/latest/jdk-17_linux-x64_bin.tar.gz 2.解压到自定义目录/usr/local/java mkdir /usr/local/java tar zxvf jdk-17_linux-x64_bin.tar.gz -C /usr/local/java 3.配置环境变量 echo export PATH$PATH:/…

金三银四面试题(十):Java基础问题(1)

这部分面试题多用于面试的热身运动&#xff0c;对很多找实习和准备毕业找工作的小伙伴至关重要。 访问修饰符 在 Java 中&#xff0c;提供了四种访问权限控制&#xff1a; public private protected 以及什么都不写&#xff08;default&#xff09; 修饰符当前类同包子包其他…

SSM学习——Spring AOP与AspectJ

Spring AOP与AspectJ 概念 AOP的全称为Aspect-Oriented Programming&#xff0c;即面向切面编程。 想象你是汉堡店的厨师&#xff0c;每一份汉堡都有好几层&#xff0c;这每一层都可以视作一个切面。现在有一位顾客想要品尝到不同风味肉馅的汉堡&#xff0c;如果按照传统的方…

【java】关于String、StringBuffer和StringBuilder的那些事

在之前的文章中我们曾简单介绍过String这个引用类型变量&#xff0c;其实它还有许多特性&#xff0c;还有StringBuffer和StringBuilder这两个方法在字符串操作中也有非常重要的地位&#xff0c;接下来就由小编带大家梳理一下吧&#x1f44a; 目录 一、String 1、构造方法 2、…

独立开发者用微信小程序赚钱

微信小程序能实现赚钱&#xff0c;赚多赚少的问题。 本人就上线了一款小程序 &#xff0c;集结者assemble &#xff0c;现在上了广告了&#xff0c;收益不是很多&#xff0c;但胜在持续&#xff0c;税后收入&#xff0c;也还在持续推广中。 开发小程序赚大钱得找到变现模式&a…

0基础学习Mybatis系列数据库操作框架——目录结构

大纲 配置的修改代码的修改Main.java文件所在包下新增org.example.model包新增org.example.mapper包 单元测试 在《0基础学习Mybatis系列数据库操作框架——最小Demo》一文中&#xff0c;我们用最简单的方法组织出一个Mybatis应用项目。为了后续构建更符合日常开发环境的项目&a…

归并排序和分治

归并排序 归并排序是利用归并的思想实现的排序方法&#xff0c;该算法采用经典的分治策略&#xff08;分治法将问题分成一些小的问题然后递归求解&#xff0c;而治的阶段则将分的阶段得到的各答案"修补"在一起&#xff0c;即分而治之)。 分而治之 可以看到这种结构…

书生浦语全链条开源开放体系

开放了高质量语料数据 预训练 微调 评测 评测框架 部署 智能体 例如把openlab对于计算机视觉的封装

LeetCode-894. 所有可能的真二叉树【树 递归 记忆化搜索 动态规划 二叉树】

LeetCode-894. 所有可能的真二叉树【树 递归 记忆化搜索 动态规划 二叉树】 题目描述&#xff1a;解题思路一&#xff1a;分治&#xff0c;递归解题思路二&#xff1a;动态规划。关键思路是如果构造节点数目为 n 的真二叉树&#xff0c;此时可以从节点数目序列为 [(1,n−2),(3,…

Linux网络编程二(TCP图解三次握手及四次挥手、TCP滑动窗口、MSS、TCP状态转换、多进程/多线程服务器实现)

文章目录 1、TCP三次握手(1) 第一次握手(2) 第二次握手(3) 第三次握手 2、TCP四次挥手(1) 一次挥手(2) 二次挥手(3) 三次挥手(4) 四次挥手 3、TCP滑动窗口4、TCP状态时序图5、多进程并发服务器6、多线程并发服务器 1、TCP三次握手 TCP三次握手(TCP three-way handshake)是TCP协…

选择SD-WAN带宽时需要考虑什么?

部署SD-WAN之前&#xff0c;企业需要考虑关系到带宽大小的一系列因素&#xff0c;以确保其网络能够满足业务需求并保持高效运行。以下是一些在确定SD-WAN带宽时需要考虑的关键因素&#xff1a; 企业规模和用户数量&#xff1a; 企业规模和用户数量是决定带宽需求的重要因素之一…

Vue的前世今生与安装配置

vue的前世今生 Vue.js是一个流行的前端JavaScript框架&#xff0c;用于构建用户界面与单页应用程序&#xff08;SPA&#xff09;。它的诞生和发展可以概括为以下几个重要阶段&#xff1a; 初创阶段&#xff1a;Vue由中国人尤雨溪&#xff08;Evan You&#xff09;创建于2014年…

人工智能聊天机器人都有哪些?分享3款神奇的软件!

在数字化浪潮中&#xff0c;人工智能聊天机器人以其独特的魅力和实用性&#xff0c;逐渐成为我们生活中不可或缺的一部分。它们能够与用户进行智能互动&#xff0c;提供多元化的服务&#xff0c;让我们的生活更加便捷和高效。那么&#xff0c;市场上究竟有哪些领先的人工智能聊…

智能停车场物联网远程监控解决方案

智能停车场物联网远程监控解决方案 智能停车场物联网远程监控解决方案是一种集成了现代物联网技术、大数据分析以及云计算等先进技术手段&#xff0c;对停车场进行全面智能化管理的综合系统。它通过实时感知、精准采集和高效传输各类停车数据&#xff0c;实现对停车场运营状态…

springcloud基本使用二(远程调用)

创建两个springboot maven子项目 子项目名称分别为order-server和user-server 配置user-server子项目: 所需依赖: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId> </dependenc…

站群CMS系统

站群CMS系统是一种用于批量建立和管理网站的内容管理系统&#xff0c;它能够帮助用户快速创建大量的网站&#xff0c;并实现对这些网站的集中管理。以下是三个在使用广泛的站群CMS系统&#xff0c;它们各具特色&#xff0c;可以满足不同用户的需求。 1. Z-BlogPHP Z-BlogPHP是…

4年经验来面试20K的测试岗,一问三不知,我还真不如去招应届生。

公司前段缺人&#xff0c;也面了不少测试&#xff0c;结果竟然没有一个合适的。一开始瞄准的就是中级的水准&#xff0c;也没指望来大牛&#xff0c;提供的薪资在10-20k&#xff0c;面试的人很多&#xff0c;但平均水平很让人失望。看简历很多都是4年工作经验&#xff0c;但面试…

vue使用i18n

&#x1f388;个人主页&#xff1a;靓仔很忙i &#x1f4bb;B 站主页&#xff1a;&#x1f449;B站&#x1f448; &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;前端 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#x…

力扣热题100_链表_141_环形链表

文章目录 题目链接解题思路解题代码 题目链接 141. 环形链表 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统…