基于深度学习的停车场车辆检测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

上图测试结果如下图所示:

2.算法运行软件版本

matlab2022a

3.部分核心程序

image = imread('image_test\test.jpg');
image2= image;%图片划分大小
R     = 10;
C     = 21;
[W,H,k] = size(image);MASK    = zeros(W,H);
for i = 1:floor(W/R)[i,floor(W/R)]for j = 1:floor(H/C)tmps = imresize(image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,:),[224,224]);[Predicted_Label, Probability] = classify(net, tmps); if double(Predicted_Label)==2image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)+60;image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2);image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);elseimage2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1);image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)+60;image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);endend
endfigure;
imshow(image);
figure;
imshow(image2);
122

4.算法理论概述

      随着城市交通管理和智慧停车系统的快速发展,停车场车辆检测已成为实现高效车位管理、智能计费的关键技术之一。深度学习,尤其是基于卷积神经网络(CNN)的目标检测技术,以其卓越的特征提取和模式识别能力,为停车场车辆检测提供了强大工具。

      GoogLeNet是一种创新的深度卷积神经网络,其核心是Inception模块。Inception模块通过多尺度并行卷积路径提取多维度特征,有效地提升了网络的表达能力和计算效率。GoogLeNet网络由一系列Inception模块堆叠而成,辅以辅助分类器和全局平均池化层,最终用于分类任务。针对停车场车辆检测任务,我们将其改造为基于滑动窗口的两阶段检测框架,即首先利用GoogLeNet提取图像特征,然后通过后处理步骤(如滑窗检测、非极大值抑制等)生成车辆检测结果。

      在停车场车辆检测任务中,GoogLeNet模型作为特征提取器,其损失函数主要体现在分类器部分。我们采用二分类交叉熵损失(Binary Cross-Entropy Loss, BCE Loss)衡量分类器预测车辆存在与否的准确性:

       模型训练时,首先在大规模通用图像数据集上预训练GoogLeNet,然后在停车场车辆检测数据集上进行微调,优化网络权重以适应车辆检测任务。

针对停车场车辆检测任务,需对GoogLeNet进行以下适应性调整:

  1. 数据集准备:收集大量包含停车场场景的图像,标注其内车辆的精确边界框。数据增强策略如翻转、旋转、缩放、光照变换等有助于提高模型泛化能力。

  2. 滑窗参数设定:依据停车场车辆的实际尺寸分布,合理设置滑动窗口的尺度和比例,确保覆盖各类车辆。

  3. 性能评估:使用平均精度(Average Precision, AP)等指标评价模型在停车场车辆检测上的性能。AP综合考虑了召回率和精确率,能全面反映模型在不同IoU阈值下的表现。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/786385.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第21章-直连路由和静态路由

1. 直连路由 1)定义:指路由器接口直接相连的网段的路由; 2)特点: ① 不需要特别的配置,双UP(物理层数据链路层); ② 在路由器的接口上配置IP地址即可; ③ 开机自动产生; …

Scala第十六章节(泛型方法, 类, 特质的用法、泛型上下界、协变, 逆变, 非变的用法以及Scala列表去重排序案例)

Scala第十六章节 章节目标 掌握泛型方法, 类, 特质的用法了解泛型上下界相关内容了解协变, 逆变, 非变的用法掌握列表去重排序案例 1. 泛型 泛型的意思是泛指某种具体的数据类型, 在Scala中, 泛型用[数据类型]表示. 在实际开发中, 泛型一般是结合数组或者集合来使用的, 除此…

vulhub中Apache solr XML 实体注入漏洞复现(CVE-2017-12629)

Apache Solr 是一个开源的搜索服务器。Solr 使用 Java 语言开发,主要基于 HTTP 和 Apache Lucene 实现。原理大致是文档通过Http利用XML加到一个搜索集合中。查询该集合也是通过 http收到一个XML/JSON响应来实现。此次7.1.0之前版本总共爆出两个漏洞:XML…

Day13Day14_学点儿HTML_基本标签、div和span、table、form

1 基本标签 HTML&#xff1a;超文本标记语言 定义页面结构 CSS&#xff1a; 层叠样式表 页面显示的样式、排版 BootStrap JS&#xff1a; JavaScript 界面交互(动态交互、逻辑) JQuery <!--~ 适度编码益脑&#xff0c;沉迷编码伤身&#xff0c;合理安排时…

SBCFormer:能够在单板计算机上以每秒1帧的速度进行全尺寸ImageNet分类的轻量级网络

摘要 https://arxiv.org/ftp/arxiv/papers/2311/2311.03747.pdf 计算机视觉在解决包括智能农业、渔业和畜牧业管理等不同领域的实际问题中变得越来越普遍。这些应用可能不需要每秒处理许多图像帧&#xff0c;因此从业者倾向于使用单板计算机&#xff08;SBCs&#xff09;。尽管…

基于SpringBoot的“校园志愿者管理系统”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“校园志愿者管理系统”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统总体结构图 系统首页界面图 志愿者注册…

数据可视化高级技术(Echarts)

目录 &#xff08;一&#xff09;数据可视化概念及Echarts基础知识 数据可视化的好处&#xff1a; 数据可视化的目标 数据可视化的基本流程 &#xff08;二&#xff09;数据图表 类别比较图表&#xff1a; 数据关系图表&#xff1a; 数据分布图表&#xff1a; 时间序列…

Excel 隔几行批量插入空白行

例如如下表格&#xff0c;每隔6行插入一行数据&#xff1a; 1&#xff09;第7个单元格输入1 2&#xff09;选中6个单元格&#xff0c;然后双击填充数据&#xff1a; 3&#xff09;F5 找到常量 Ctrlshift 复制插入的数据&#xff0c;然后选中数据 按F5&#xff0c;定位到空值

【Web】记录Polar靶场<中等>难度题一遍过(全)

目录 到底给不给flag呢 写shell 注入 某函数的复仇 xxe SSTI unpickle BlackMagic 反序列化 找找shell 再来ping一波啊 wu 代码审计1 你的马呢&#xff1f; ezphp 随机值 phpurl search file PlayGame csdn 反正持续一个月&#xff0c;感觉XYCTF…

FPGA高端项目:解码索尼IMX327 MIPI相机+图像缩放+HDMI输出,提供开发板+工程源码+技术支持

目录 1、前言2、相关方案推荐本博主所有FPGA工程项目-->汇总目录我这里已有的 MIPI 编解码方案 3、本 MIPI CSI-RX IP 介绍4、个人 FPGA高端图像处理开发板简介5、详细设计方案设计原理框图IMX327 及其配置MIPI CSI RX图像 ISP 处理自研HLS图像缩放详解图像缓存HDMI输出工程…

【产品经理】全面解读“数字孪生”

理解数字孪生 随着互联网技术的深入发展&#xff0c;数字孪生被越来越多地提及&#xff0c;那么数字孪生到底是什么&#xff1f;数字孪生&#xff0c;翻译自英文“Digital Twin”&#xff0c;最早在2002年&#xff0c;被从事产品生命周期管理PLM的Michael Grieves教授&#xf…

探究云手机的海外原生IP优势

随着全球数字化进程的加速&#xff0c;企业越来越依赖于网络来扩展其业务。在这个数字时代&#xff0c;云手机作为一种创新的通信技术&#xff0c;已经成为了企业网络优化的重要组成部分。云手机支持海外原生IP的特性&#xff0c;为企业在国际市场上的拓展提供了全新的可能性。…

大数据系列 | Kafka架构分析及应用

大数据系列 | Kafka架构分析及应用 1. Kafka原理分析2. Kafka架构分析3. Kafka的应用3.1. 安装Zookeeper集群3.2. 安装Kafka集群3.3. 生产者和消费者使用3.3.1. 生产者使用3.3.1. 消费者使用 4. Kafka Controller控制器 1. Kafka原理分析 Kafka是一个高吞吐量、 持久性的分布式…

电商运营自动化新里程:取数宝引领数字化转型实践

随着电子商务行业的高速发展及复杂化&#xff0c;精细化运营已成为电商企业提升竞争力的关键所在。尤其是在海量数据处理与实时分析方面&#xff0c;自动化工具的引入对企业管理和决策带来了革命性变化。其中&#xff0c;“取数宝”作为一种先进的电商运营自动化解决方案&#…

dockerfile制作-pytoch+深度学习环境版

你好你好&#xff01; 以下内容仅为当前认识&#xff0c;可能有不足之处&#xff0c;欢迎讨论&#xff01; 文章目录 文档内容docker相关术语docker常用命令容器常用命令根据dockerfile创建容器dokerfile文件内容 docker问题&#xff1a;可能的原因和解决方法示例修改修改后的D…

解析Apache Kafka:在大数据体系中的基本概念和核心组件

关联阅读博客文章&#xff1a;探讨在大数据体系中API的通信机制与工作原理 关联阅读博客文章&#xff1a;深入解析大数据体系中的ETL工作原理及常见组件 关联阅读博客文章&#xff1a;深度剖析&#xff1a;计算机集群在大数据体系中的关键角色和技术要点 关联阅读博客文章&a…

LuaJIT源码分析(二)数据类型

LuaJIT源码分析&#xff08;二&#xff09;数据类型 LuaJIT支持的lua数据类型和官方的lua 5.1版本保持一致&#xff0c;它的源文件中也有一个lua.h&#xff1a; // lua.h /* ** basic types */ #define LUA_TNONE (-1)#define LUA_TNIL 0 #define LUA_TBOOLEAN 1 #define L…

【数据结构】顺序表的实现——动态分配

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;数据结构 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

vscode通过ssh连接服务器(吐血总结)

一、通过ssh连接服务器 1、打开vscode&#xff0c;进入拓展&#xff08;CtrlShiftX&#xff09;&#xff0c;下载拓展Remote - SSH。 2、点击远程资源管理器选项卡&#xff0c;选择远程&#xff08;隧道/SSH&#xff09;类别。 3、点击SSH配置。 4、在中间上部分弹出的配置文件…

LangChain入门:9.使用FewShotPromptTemplate实现智能提示工程

在构建智能提示工程时&#xff0c;LangChain 提供了强大的 FewShotPromptTemplate 模型&#xff0c;它可以帮助我们更好地利用示例来指导大模型生成更加优质的提示。 在这篇博文中&#xff0c;我们将使用 LangChain 的 FewShotPromptTemplate 模型来设计一个智能提示工程&#…