【数据结构】非线性结构---二叉树

1、树

1.1 树的相关概念

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林;

1.2 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间 的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。其中最常用的是孩子兄弟表示法。

 typedef int DataType;struct Node{struct Node* _firstChild1;  // 第一个孩子结点  struct Node* _pNextBrother; // 指向其下一个兄弟结点  DataType _data;  // 结点中的数据域            };

2.二叉树概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空

2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

1. 二叉树不存在度大于2的结点

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

 2.2特殊的二叉树

 1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是,则它就是满二叉树。

满二叉树:每一层都是满的,结点个数为2^h-1

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

完全二叉树:前n-1层都是满的,最后一层可以不满,但是从左到右是连续的,结点范围[2^(h-1), 2^h-1]

2.3 二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 个结点2^(i-1).

2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1.

3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0 , 度为2的分支结点个数为n0=n2+1.

4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= ,则有= . (ps: +1 是log以2 为底,n+1为对数)

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对 于序号为i的结点有: 

        1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点

        2. 若2i+1=n否则无左孩子

        3. 若2i+2=n否则无右孩子

3.二叉树的顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

3.2 堆的概念及结构

一个集合所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,堆中某个节点的值总是小于或等于其父节点的值是大堆,堆中某个节点的值总是大于或等于其父节点的值是小堆。

3.3 堆的实现

#include "Heap.h"void HPInit(HP* php)
{assert(php);php->a = (Datatype*)malloc(sizeof(Datatype) * 4);if (php->a == NULL){perror("malloc fail");return;}php->size = 0;php->capacity = 4;
}void HPInitArray(HP* php, int* a, int n)
{assert(php);php->a = (Datatype*)malloc(sizeof(Datatype) * n);if (php->a == NULL){perror("malloc fail");return;}php->size = n;php->capacity = n;for (int i = (n - 1 - 1) / 2; i >= 0; i++){AdjustDown(php->a, php->size, i);}
}void HPDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = 0;php->capacity = 0;
}void Swap(Datatype* p1, Datatype* p2)
{Datatype tmp = p1;*p1 = *p2;*p2 = tmp;
}//除了child,前面的数据都构成堆
void AdjustUp(Datatype* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] > a[parent])// 大堆{Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//左右子树都构成大堆或小堆
void AdjustDown(Datatype* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child + 1] > a[child])//大堆{++child;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}void HPPush(HP* php, Datatype x) 
{assert(php);if (php->size == php->capacity){Datatype* tmp = (Datatype*)realloc(php->a, sizeof(Datatype)*php->capacity*2);if (tmp == NULL){perror("realloc fail");return;}php->a = tmp;php->capacity *= 2;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}void HPPop(HP* php)
{assert(php);assert(!PHEmpty(php));//和最后一个数据交换Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size - 1, 0);}Datatype HPTop(HP* php)
{assert(php);return php->a[0];
}bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}int HPSize(HP* php)
{assert(php);return php->size;
}//堆排序--升序--建大堆
void HPSort(int* a, int n) 
{建堆--向上调整--O(NlogN)//for (int i = 1; i < n; i++)//{//	AdjustUp(a, i);//}//建堆--向下调整--O(N)for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a, n, i);}//实现排序--O(NlogN)int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/785388.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker部署实用的运维开发手册

下载镜像 docker pull registry.cn-beijing.aliyuncs.com/wuxingge123/reference:latestdocker-compose部署 vim docker-compose.yml version: 3 services:reference:container_name: referenceimage: registry.cn-beijing.aliyuncs.com/wuxingge123/reference:latestports:…

ES6学习之路:迭代器Iterator和生成器Generator

迭代器 一、知识背景 什么是迭代器 迭代器就是在一个数据集合中不断取出数据的过程迭代和遍历的区别 遍历是把所有数据都取出迭代器注重的是依次取出数据&#xff0c;它不会在意有多少数据&#xff0c;也不会保证能够取出多少或者能够把数据都取完。比如斐波那契额数列&#…

openstack云计算(二)——使用Packstack安装器安装一体化OpenStack云平台

初步掌握OpenStack快捷安装的方法。掌握OpenStack图形界面的基本操作。 一【准备阶段】 &#xff08;1&#xff09;准备一台能够安装OpenStack的实验用计算机&#xff0c;建议使用VMware虚拟机。 &#xff08;2&#xff09;该计算机应安装CentOS 7&#xff0c;建议采用CentO…

基于Sermant的全链路灰度发布在汽车行业DMS系统的应用

作者&#xff1a;聂子雄 华为云高级软件工程师 摘要 随着汽车产业的智能升级&#xff0c;DMS系统作为汽车行业的经销管理系统也面临着更加多种多样的业务场景的挑战。借助Sermant&#xff0c;华为云能够为DMS系统提供一整套端到端全链路灰度发布方案&#xff0c;这套方案可以…

深度学习训练中常用的三个基础库tqdmargparseyaml

文章目录 训练常用工具[tqdm][argparse][yaml]tqdm1. 导入tqdm2. 传入可迭代对象快速使用进阶1&#xff1a;通过update()自定义进度条每次更新的步长进阶2&#xff1a;通过set_description和set_postfix自定义进度条内容 Argparse第一步&#xff1a;创建ArgumentParser对象第二…

机器学习在智能音箱中的应用探索与实践:让声音更懂你

&#x1f9d1; 作者简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向的学习指导…

2024 ccfcsp认证打卡 2023 03 01 田地丈量

import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner in new Scanner(System.in);int n in.nextInt(); // 输入 n&#xff0c;表示矩形的数量int a in.nextInt(); // 输入 a&#xff0c;表示整个区域的长度int b in.nextInt()…

Hive详解(5)

Hive 窗口函数 案例 需求&#xff1a;连续三天登陆的用户数据 步骤&#xff1a; -- 建表 create table logins (username string,log_date string ) row format delimited fields terminated by ; -- 加载数据 load data local inpath /opt/hive_data/login into table log…

如何在Portainer中创建Nginx服务并搭建静态站点实现公网访问本地网站

文章目录 前言1. 安装Portainer1.1 访问Portainer Web界面 2. 使用Portainer创建Nginx容器3. 将Web静态站点实现公网访问4. 配置Web站点公网访问地址4.1公网访问Web站点 5. 固定Web静态站点公网地址6. 固定公网地址访问Web静态站点 前言 Portainer是一个开源的Docker轻量级可视…

报错:TypeError: Cannot handle this data type: (1, 1, 3), <f8

报错内容&#xff1a; 解决方法&#xff1a; 这个错误是由于 PIL 库无法处理特定的数据类型引起的。为了解决这个问题&#xff0c;你可以尝试将数据类型转换为 PIL 可以处理的类型&#xff0c;比如转换为 uint8 类型。你可以在调用 Image.fromarray() 方法之前&#xff0c;将…

SQL,group by分组后分别计算组内不同值的数量

SQL&#xff0c;group by分组后分别计算组内不同值的数量 如现有一张购物表shopping 先要求小明和小红分别买了多少笔和多少橡皮&#xff0c;形成以下格式 SELECT name,COUNT(*) FROM shopping GROUP BY name;SELECT name AS 姓名,SUM( CASE WHEN cargo 笔 THEN 1 ELSE 0 END)…

使用CRXjs、Vite、Vue 开发 Chrome 多页面插件,手动配置 vite.config.ts 和 manifest.json 文件

一、使用CRXjs、Vite、Vue 开发 Chrome 多页面插件&#xff0c;手动配置 vite.config.ts 和 manifest.json 文件 一、创建 Vue 项目 1. 使用 Vite 创建 Vue 项目 npm create vitelatest # npm yarn create vite # yarn pnpm create vite # pnpm选择 Vue 和 TS 进入项目…

在Windows中使用NVM安装node.js

NVM介绍 Node.js版本管理器&#xff08;Node Version Manager&#xff09;&#xff0c;简称NVM&#xff0c;是一款用于在单个系统上轻松安装和管理多个Node.js版本的命令行工具。它允许用户根据项目需求在不同版本之间自由切换&#xff0c;解决了因为不同项目依赖于不同Node.j…

Python快速入门系列-6(Python高级特性)

第六章: Python高级特性 6.1 列表推导式与生成器6.1.1 列表推导式6.1.2 生成器6.1.2.1 生成器表达式6.1.2.2 生成器函数6.2 装饰器与迭代器6.2.1 装饰器6.2.2 迭代器6.3 异常处理与错误调试6.3.1 异常处理6.3.1.1 try-except语句6.3.1.2 try-except-else语句6.3.2 错误调试6.3…

【缺陷】硅光电二极管中的DT侧壁陷阱态的DLTS表征

【A DLTS study on Deep Trench Processing induced Trap States in Silicon Photodiodes】 概括 本研究通过深能级瞬态光谱&#xff08;DLTS&#xff09;技术对硅光电二极管中的深沟槽&#xff08;DT&#xff09;侧壁诱导的陷阱态进行了详细分析。研究发现&#xff0c;这些陷…

golang语言系列:通用技能之 Scrum、Kanban等敏捷管理策略

云原生学习路线导航页&#xff08;持续更新中&#xff09; 本文是 golang语言系列 文章&#xff0c;主要对编程通用技能 Scrum、Kanban等敏捷管理策略 进行学习 1.什么是敏捷开发 敏捷是一个描述软件开发方法的术语&#xff0c;它强调增量交付、团队协作、持续规划和持续学习。…

电商新秀视频号小店,2024年值得加入吗?

大家好&#xff0c;我是电商糖果 视频号小店去年的热度非常高&#xff0c;很多第一批入驻的商家&#xff0c;也赚的盆满钵满。 于是就有不少商家问糖果&#xff0c;关于视频号小店2024值不值得加入&#xff0c;想听听我的看法。 糖果做电商有六七年的时间了&#xff0c;喜欢…

基于springboot实现网上点餐系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现网上点餐系统演示 摘要 随着科学技术的飞速发展&#xff0c;各行各业都在努力与现代先进技术接轨&#xff0c;通过科技手段提高自身的优势&#xff1b;对于网上点餐系统当然也不能排除在外&#xff0c;随着网络技术的不断成熟&#xff0c;带动了网上点餐系统…

【解決|三方工具】Obi Rope 编辑器运行即崩溃问题

开发平台&#xff1a;Unity 2021.3.7 三方工具&#xff1a;Unity资产工具 - Obi Rope   问题背景 使用Unity三方开发工具 - Obi Rope 模拟绳索效果。配置后运行 Unity 出现报错并崩溃。通过崩溃日志反馈得到如下图所示 这是一个序列化问题造成的崩溃&#xff0c;指向性为 Obi…

基于8086数码管数字钟计时器设计

**单片机设计介绍&#xff0c;基于8086数码管数字钟计时器设计 文章目录 一 概要二、功能设计三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于8086数码管数字钟计时器设计是一个结合了微处理器控制、数码管显示以及计时功能的综合性项目。通过此设计&#xff0c;我们…