【STM32嵌入式系统设计与开发】——12IWDG(独立看门狗应用)

这里写目录标题

  • 一、任务描述
  • 二、任务实施
    • 1、ActiveBeep工程文件夹创建
    • 2、函数编辑
      • (1)主函数编辑
      • (2)USART1初始化函数(usart1_init())
      • (3)USART数据发送函数( USART1_Send_Data())
      • (4)USART数据发送函数( USART1_IRQHandler())
      • (5)系统时间初始化函数( SystemTinerInit())
      • (6)等待计时函数( WaitTimerOut())
      • (7)系统时间定时器中断服务函数( TIM3_IRQHandler())
      • (8)获取系统计时时间函数( GetSystemTimer())
      • (9)外部中断4初始化函数( EXTIX_Init())
      • (10)外部中断4服务函数( EXTI4_IRQHandler())
      • (11)独立看门狗初始化函数(IWDG_Init())
      • (12)喂独立看门狗函数(IWDG_Feed())
    • 3、宏定义
      • 定时器宏定义
      • 中断宏定义
      • 独立看门狗宏定义
    • 4、知识链接
      • (1)独立看门狗
      • (2)独立看门狗时间计算
    • 5、工程测试


STM32资料包:
百度网盘下载链接:链接:https://pan.baidu.com/s/1mWx9Asaipk-2z9HY17wYXQ?pwd=8888
提取码:8888


一、任务描述

在这里插入图片描述

二、任务实施

观察电路图:
TXD(底板) ————————> PA10
RXD(底板) ————————> PA9
DK1(底板) ————————> PC4
D1 (底板) ————————> PA8
使用USB-AB型数据线,连接15核心板USB口,串口发送接收到的数据。在这里插入图片描述

1、ActiveBeep工程文件夹创建

步骤1:复制工程模板“1_Template”重命名为“9_IWDG”。
在这里插入图片描述

步骤2:修改项目工程名,先删除projects文件夹内除了Template.uvprojx文件外的所有内容并修改为“IWDG.uvprojx”。并删除output/obj和output/lst中的所有文件。
请添加图片描述

步骤3:运行“Exit.uvprojx”打开目标选项“Options for Target”中的“Output”输出文件,并修改可执行文件名称为“IWDG”点击“OK”保存设置。最后点击“Rebuild”编译该工程生成Usart文件。
请添加图片描述
步骤4:复制“2_SingleKey”中的"1_LED"和"SingleKey"文件复制到hardware中。
请添加图片描述
步骤5:在“system”中新建“iwdg”文件夹,并新建“iwdg.c”和“iwdg.h”文件。在这里插入图片描述
步骤5:工程组文件中添加“led.c”和“SingleKey.c”文件。
请添加图片描述
步骤5:工程组文件中添加“iwdg.c”和“iwdg.h”文件。
在这里插入图片描述
步骤6:目标选项添加添加头文件路径。
在这里插入图片描述

2、函数编辑

(1)主函数编辑

置的硬件设备,用于监视单片机的运行情况。如果程序出现了错误或者陷入了无限循环,独立看门狗就会启动,重置单片机,让其恢复到安全状态。
在这里插入图片描述
步骤1:端口初始化准备

	//函数初始化,端口准备delay_init();                   //启动滴答定时器usart1_init(9600);              //USART1初始化LED_Init();                     //板载LED初始化SystemTinerInit(1000-1,7200-1); //系统时间初始化 定时100msExpKeyInit();                   //开发板按键初始化LED = 0;  delay_ms(800);                  //让人看得到灭IWDG_Init(4,625);               //与分频数为64,重载值为625,溢出时间为1sLED = 1;delay_ms(800);

在这里插入图片描述
步骤2:实现一个简单的计时器,并在每秒打印一次计时信息。利用LED状态的改变来指示系统正在运行。

	while(1){	IWDG_Feed();//如果DK1按下,则喂狗LED = 0;delay_ms(100);LED = 1;delay_ms(100);if(!DK1)    //按下DK1按键delay_ms(1000);delay_ms(20);}	

在这里插入图片描述

(2)USART1初始化函数(usart1_init())

配置了 PA9 为复用推挽输出,用于 USART1 的 TXD,并配置了 PA10 为浮空输入,用于 USART1 的 RXD。并配置了 USART1 的参数,包括波特率、数据位长度、停止位数、校验位、硬件流控制和工作模式。

/*********************************************************************@Function  : USART1初始化@Parameter : bound : 波特率 @Return    : N/A
**********************************************************************/   	
void usart1_init(uint32_t bound)
{GPIO_InitTypeDef GPIO_InitStructure;             										          // 定义 GPIO 初始化结构体USART_InitTypeDef USART_InitStructure;            										          // 定义 USART 初始化结构体NVIC_InitTypeDef NVIC_InitStructure;              										          // 定义 NVIC 初始化结构体/* 时钟使能:启用 USART1 和 GPIOA 的时钟 */RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);/* 引脚复用配置 */  // 配置 PA9 为复用推挽输出,用于 USART1 的 TXDGPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;   		                             // 设置 GPIO 端口GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;                                // 设置 GPIO 速度GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; 								 // 设置 GPIO 模式为复用推挽GPIO_Init(GPIOA, &GPIO_InitStructure);          							     // 初始化 GPIO// 配置 PA10 为浮空输入,用于 USART1 的 RXDGPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;                                      // 设置 GPIO 端口GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;                           // 设置 GPIO 模式为浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);                                          // 初始化 GPIO/* NVIC 中断配置 */ NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;                               // 设置中断通道为 USART1NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;                       // 设置抢占优先级为3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;                              // 设置子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                                 // 使能中断通道NVIC_Init(&NVIC_InitStructure);                                                 // 初始化 NVIC/* USART1 配置 */ USART_InitStructure.USART_BaudRate = bound;                                     // 设置波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;                     // 设置数据位长度为8位USART_InitStructure.USART_StopBits = USART_StopBits_1;                          // 设置停止位为1位USART_InitStructure.USART_Parity = USART_Parity_No;                             // 设置校验位为无校验USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 设置硬件流控制为无USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;                 // 设置工作模式为接收和发送USART_Init(USART1, &USART_InitStructure);                                       // 初始化 USART1/*中断配置*/USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);                                //开接受中断 USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);                                //开空闲中断USART_ITConfig(USART1,USART_IT_TXE,ENABLE);                                 //开发送中断	USART_Cmd(USART1, ENABLE);                                                  //启用USART1USART_DataTypeStr.Usart_Tc_State = SET;	                                    //置位发送允许标志	      
}

在这里插入图片描述

(3)USART数据发送函数( USART1_Send_Data())

初始化PD14端口,并为推挽输出。

/*********************************************************************@Function  : USART数据发送函数@Parameter : Data 	 :要发送的数据缓存.Lenth  :发送长度@Return    : 发送状态   1 :失败   0 :成功
**********************************************************************/
char USART1_Send_Data(char* Data,uint8_t Lenth) 
{uint8_t uNum = 0;if(USART_DataTypeStr.Usart_Tc_State == 1)                       //判断发送标志位是否置1{USART_DataTypeStr.Usart_Tc_State = 0;                       //将发送标志位清零,表示数据已经成功放入缓存,等待发送USART_DataTypeStr.Usart_Tx_Len = Lenth;                     //获取需要发送的数据的长度       for(uNum = 0;uNum < USART_DataTypeStr.Usart_Tx_Len;uNum ++)   //将需要发送的数据放入发送缓存{USART_DataTypeStr.Usart_Tx_Buffer[uNum] = Data[uNum];}USART_ITConfig(USART1,USART_IT_TXE,ENABLE);			            //数据放入缓存后打开发送中断,数据自动发送}return USART_DataTypeStr.Usart_Tc_State;                        //返回放数据的状态值,为1表示发送失败,为0表示发送成功了
}

在这里插入图片描述

(4)USART数据发送函数( USART1_IRQHandler())

/*********************************************************************@Function  : USART1中断服务函数@Parameter : N/A @Return    : N/A
**********************************************************************/
void USART1_IRQHandler(void)                
{uint8_t Clear = Clear;                                                                           // 定义清除标志的变量,并初始化为自身static uint8_t uNum = 0;                                                                          // 静态变量,用于循环计数if(USART_GetITStatus(USART1,USART_IT_RXNE) != RESET)                                                // 判断读数据寄存器是否为非空{USART_ClearFlag(USART1, USART_IT_RXNE);                                                           // 清零读数据寄存器,其实硬件也可以自动清零USART_DataTypeStr.Usart_Rx_Buffer[USART_DataTypeStr.Usart_Rx_Num ++] = \(uint16_t)(USART1->DR & 0x01FF);                                                              // 将接收到的数据存入接收缓冲区(USART_DataTypeStr.Usart_Rx_Num) &= 0xFF;                                                     // 防止缓冲区溢出} else if(USART_GetITStatus(USART1,USART_IT_IDLE) != RESET)   // 检测空闲{Clear = USART1 -> SR;                                                                         // 读SR位Clear = USART1 -> DR;                                                                       // 读DR位,USART_DataTypeStr.Usart_Rx_Len = USART_DataTypeStr.Usart_Rx_Num;                              // 获取数据长度for(uNum = 0; uNum < USART_DataTypeStr.Usart_Rx_Len; uNum ++)          {USART_DataTypeStr.Usart_Rx_Data[uNum] = USART_DataTypeStr.Usart_Rx_Buffer[uNum];      // 将接收到的数据复制到接收数据缓冲区}USART_DataTypeStr.Usart_Rx_Num = 0;                                                           // 清空接收计数器USART_DataTypeStr.Usart_Rc_State = 1;                                                         // 数据读取标志位置1,读取串口数据}if(USART_GetITStatus(USART1,USART_IT_TXE) != RESET)                                                  // 判断发送寄存器是否为非空{USART1->DR = \((USART_DataTypeStr.Usart_Tx_Buffer[USART_DataTypeStr.Usart_Tx_Num ++]) & (uint16_t)0x01FF);    // 发送数据(USART_DataTypeStr.Usart_Tx_Num) &= 0xFF;                                                       // 防止缓冲区溢出if(USART_DataTypeStr.Usart_Tx_Num >= USART_DataTypeStr.Usart_Tx_Len){   USART_ITConfig(USART1,USART_IT_TXE,DISABLE);                                                // 发送完数据,关闭发送中断USART_DataTypeStr.Usart_Tx_Num = 0;                                                         // 清空发送计数器USART_DataTypeStr.Usart_Tc_State = 1;                                                       // 发送标志置1,可以继续发送数据了} 		}}

在这里插入图片描述

(5)系统时间初始化函数( SystemTinerInit())

Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz;初始化TIM3定时器,配置定时器的周期值、预分频值、计数模式等参数,并使能定时器及其中断

/*********************************************************************@Function  : 系统时间初始化@Parameter : arr:自动重装值。psc:时钟预分频数@Return    : N/A@Read 			:Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz
**********************************************************************/
void SystemTinerInit(uint16_t arr, uint16_t psc)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;               // 定义TIM基本参数结构体NVIC_InitTypeDef NVIC_InitStructure;                         // 定义中断优先级配置结构体/* 时钟使能 */RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);         // 使能TIM3时钟/* TIM配置 */TIM_TimeBaseStructure.TIM_Period = arr;                      // 设置定时器的周期值TIM_TimeBaseStructure.TIM_Prescaler = psc;                   // 设置定时器的预分频值TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;      // 设置时钟分频因子为1TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  // 设置计数模式为向上计数TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);              // 初始化TIM3定时器/* 允许中断 */TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);                   // 使能TIM3更新(溢出)中断/* NVIC 配置 */NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;              // 设置TIM3中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;    // 设置TIM3中断的抢占优先级为0NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;           // 设置TIM3中断的子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;              // 使能TIM3中断通道NVIC_Init(&NVIC_InitStructure);                              // 初始化NVIC/* 使能TIMx */TIM_Cmd(TIM3, ENABLE);                                       // 使能TIM3定时器
}

(6)等待计时函数( WaitTimerOut())

定时器超时检测功能,根据传入的参数 gTimer 和系统时钟计数器,判断定时器是否超时,并返回相应的状态。

/*********************************************************************@Function  : 等待计时@Parameter : gTimer :等待时间,100ms一个单位@Return    : 1表示超时,0表示未超时
**********************************************************************/
uint8_t WaitTimerOut(uint32_t gTimer)
{	uint32_t GTr = 0;                         // 定义变量用于存储定时器剩余时间if(gTimer==0) return 1;                   // 如果等待时间为0,则直接返回1,表示不等待GTr = SystemTimer % gTimer;	              // 计算定时器剩余时间if((GTr==0) && (!Rti) && (Gti != gTimer)) // 如果定时器剩余时间为0,且上次未检测到超时,并且当前定时器时间不等于上次记录的时间{ Rti=1;                                // 设置标志表示检测到定时器超时Gti = gTimer;                         // 更新记录的定时器时间return 1;                             // 返回1表示超时}else if((GTr!=0) && (Rti))                // 如果定时器剩余时间不为0,且上次检测到超时,则将标志置为0Rti=0;if(!GetTimer) GetTimer = SystemTimer;	  // 如果记录定时器开始时间为0,则将其设置为当前系统时间if(SystemTimer - GetTimer == gTimer)      // 如果当前系统时间减去记录的定时器开始时间等于设定的等待时间,则返回1表示超时{ GetTimer = 0;                         // 将记录的定时器开始时间清零,准备下一次记录return 1;                             // 返回1表示超时}return 0;                                 // 返回0表示未超时
}

在这里插入图片描述

(7)系统时间定时器中断服务函数( TIM3_IRQHandler())

实现TIM3定时器的中断服务程序,每次定时器溢出时,增加 SystemTimer 计数值,并在计数到60时归零,同时清除中断标志位。

/*********************************************************************@Function  : 系统时间定时器中断服务函数@Parameter : N/A@Return    : N/A
**********************************************************************/
void TIM3_IRQHandler(void)   
{	// 检查定时器更新中断是否触发if(TIM_GetITStatus(TIM3, TIM_IT_Update) == SET) // 溢出中断{SystemTimer++;                                // 系统时间计数器加1if(SystemTimer == 60)	                        // 如果系统时间计数器达到60,则重置为0,并且清零记录的定时器开始时间{	SystemTimer = 0;GetTimer = 0;}}// 清除定时器更新中断标志位TIM_ClearITPendingBit(TIM3, TIM_IT_Update);     // 清除中断标志位
}

在这里插入图片描述

(8)获取系统计时时间函数( GetSystemTimer())

/*********************************************************************@Function  : 获取系统计时时间@Parameter : N/A@Return    : N/A
**********************************************************************/
uint32_t GetSystemTimer(void)
{return SystemTimer;
}

在这里插入图片描述

(9)外部中断4初始化函数( EXTIX_Init())

/*********************************************************************@Function  : 外部中断4初始化@Parameter : N/A@Return    : N/A
**********************************************************************/
void EXTIX_Init(void)
{EXTI_InitTypeDef EXTI_InitStructure;                      // 定义外部中断配置结构体NVIC_InitTypeDef NVIC_InitStructure;                      // 定义中断控制器配置结构体/*时钟使能*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);	      // 使能 AFIO 时钟,用于配置外部中断的映射/*中断线配置*/   GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource4); // 配置外部中断线,将 PC4 映射到外部中断4EXTI_InitStructure.EXTI_Line = EXTI_Line4;	              // 设置外部中断线为 EXTI4EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;	      // 设置外部中断模式为中断模式EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;     // 设置触发方式为下降沿触发EXTI_InitStructure.EXTI_LineCmd = ENABLE;                   // 使能外部中断线EXTI_Init(&EXTI_InitStructure);	 	                      // 初始化外部中断配置/*NVIC配置*/NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;	          // 设置中断向量为外部中断4NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02;// 设置抢占优先级为2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03;       // 设置子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;	          // 使能外部中断4NVIC_Init(&NVIC_InitStructure);                             // 初始化中断控制器配置/*关闭蜂鸣器*/beep = 0;                                                 // 初始化蜂鸣器状态为关闭
}

(10)外部中断4服务函数( EXTI4_IRQHandler())

/*********************************************************************@Function  : 外部中断4服务程序@Parameter : N/A@Return    : N/A
**********************************************************************/
void EXTI4_IRQHandler(void)
{delay_ms(10);//消抖if(DK1==0)				 beep =!beep;	EXTI_ClearITPendingBit(EXTI_Line4); //清除LINE4上的中断标志位  
}

在这里插入图片描述

(11)独立看门狗初始化函数(IWDG_Init())

/*********************************************************************@Function  : 初始化独立看门狗@Parameter : prer : 分频数:0~7(只有低3位有效!)rlr  : 重装载寄存器值:低11位有效.@Return    : N/A@Read 			: 1、分频因子=4*2^prer.但最大值只能是256!2、时间计算(大概):Tout=((4*2^prer)*rlr)/40 (ms).
**********************************************************************/
void IWDG_Init(uint8_t prer,uint16_t rlr) 
{	IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);  //使能对寄存器IWDG_PR和IWDG_RLR的写操作IWDG_SetPrescaler(prer);                       //设置IWDG预分频值:设置IWDG预分频值为64IWDG_SetReload(rlr);                           //设置IWDG重装载值IWDG_ReloadCounter();                          //按照IWDG重装载寄存器的值重装载IWDG计数器IWDG_Enable();                                 //使能IWDG
}

在这里插入图片描述

(12)喂独立看门狗函数(IWDG_Feed())

/*********************************************************************@Function  : 喂独立看门狗@Parameter : N/A@Return    : N/A@Read 			: 不喂狗会自动复位系统				
**********************************************************************/
void IWDG_Feed(void)
{   IWDG_ReloadCounter();                          //重新加载						   
}

在这里插入图片描述

3、宏定义

步骤1:主函数添加所需的头文件,主源文件部分报错消失

#include ".\iwdg\iwdg.h"/***********Hardweare***************/
#include "led.h"
#include "SingleKey.h"

在这里插入图片描述

步骤2:添加中断源文件所需的头文件

#include ".\iwdg\iwdg.h"
#include "stm32f10x_iwdg.h" 

在这里插入图片描述

步骤3:添加宏定义

#define USART_RX_LEN  200               // 接收缓冲区最大长度
#define USART_TX_LEN  200               // 发送缓冲区最大长度
#define UART_NUM      10                // 串口结构体最大对象数量

在这里插入图片描述
步骤4:添加函数声明

void usart1_init(uint32_t bound);
extern USART_DataTypeDef USART_DataTypeStr; 
char USART1_Send_Data(char* Data,uint8_t Lenth);

在这里插入图片描述
步骤5:添加数据类型和宏的头文件

//定义串口数据结构体
typedef struct USART_DataType 
{uint8_t Usart_Rx_Len;          // 接收缓冲区长度uint8_t Usart_Tx_Len;          // 发送缓冲区长度uint8_t Usart_Rx_Num;          // 接收数据计数uint8_t Usart_Tx_Num;          // 发送数据计数uint8_t Usart_Rc_State;        // 接收状态标志位uint8_t Usart_Tc_State;        // 发送状态标志位char Usart_Rx_Buffer[USART_RX_LEN]; // 接收缓冲区char Usart_Tx_Buffer[USART_TX_LEN]; // 发送缓冲区char Usart_Rx_Data[USART_RX_LEN];   // 接收数据char Usart_Tx_Data[USART_TX_LEN];   // 发送数据
} USART_DataTypeDef;

在这里插入图片描述
步骤6:定义一个串口数组变量

USART_DataTypeDef USART_DataTypeStr={0};

在这里插入图片描述

定时器宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H#endif

在这里插入图片描述

步骤2:添加函数声明

void SystemTinerInit(uint16_t arr,uint16_t psc);//系统时间初始化函数
uint32_t GetSystemTimer(void);                  //获取系统计时时间函数
uint8_t WaitTimerOut(uint32_t gTimer);          //等待计时函数

在这里插入图片描述

步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

中断宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H#endif

在这里插入图片描述
步骤2:添加函数声明

void EXTIX_Init(void);	

在这里插入图片描述
步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

独立看门狗宏定义

步骤1:创建一个宏定义保护

#ifndef __IWDG_H
#define __IWDG_H#endif

在这里插入图片描述
步骤2:添加函数声明

void IWDG_Init(uint8_t prer,uint16_t rlr);
void IWDG_Feed(void);

在这里插入图片描述
步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

4、知识链接

(1)独立看门狗

在这里插入图片描述

在 STM32 单片机中,独立看门狗也是类似的。它是一个内置的硬件设备,用于监视单片机的运行情况。如果程序出现了错误或者陷入了无限循环,独立看门狗就会启动,重置单片机,让其恢复到安全状态,以防止系统崩溃或者出现不可预料的问题。就像在厨房里一样,独立看门狗在单片机中扮演着保护系统安全的角色。

(2)独立看门狗时间计算

初始化独立看门狗为1S:
IWDG_Init(uint8_t prer,uint16_t rlr)
时间计算(大概):Tout=((4*2^prer)rlr)/40 (ms)
分频因子=4
2^prer.
但最大值只能是256!
1000ms = 4x2^4x625/40ms

5、工程测试

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/783862.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2025中国跨境电商交易会(春季福州)

2025中国跨境电商交易会&#xff08;春季福州&#xff09; 时间&#xff1a;2025年3月18-20日 地点&#xff1a;福州海峡国际会展中心 预订以上展会详询陆先生 I38&#xff08;前三位&#xff09; I82I&#xff08;中间四位&#xff09; 9I72&#xff08;后面四位&#x…

系统慢查询的思考

系统慢查询的思考 在一个系统中发现慢查询的功能或很卡的现象。你是怎么思考的&#xff1f;从哪几个方面去思考&#xff1f;会用什么工具&#xff1f; 一个系统使用了几年后都可能会出现这样的问题。原因可能有以下几点。 数据量的增加。系统中平时的使用中数据量是有一个累…

数据结构——优先级队列及多服务台模拟系统的实现

一、优先级队列的定义和存储 优先级队列定义&#xff1a;优先级高的元素在队头&#xff0c;优先级低的元素在队尾 基于普通线性表实现优先级队列&#xff0c;入队和出队中必有一个时间复杂度O(n),基于二叉树结构实现优先级队列&#xff0c;能够让入队和出队时间复杂度都为O(log…

正多边形拓扑与泛函

&#xff08;原创&#xff1a;Daode3056&#xff09; 也许&#xff0c;关于“拓扑”&#xff0c;“泛函”几本书上的内容与实例都是大同小异&#xff0c;总是那么点内容&#xff0c;数学要开拓一些新领域与新内容才能满足不断发展的社会与工业各种需要。本文就以人工智能生成对…

喜报!湖南创远荣获“2023年度中国有色金属工业科技进步奖”二等奖

近日&#xff0c;一则喜讯传来&#xff0c;湖南创远再创佳绩&#xff0c;联合中南大学、山西紫金合作的“智能矿山穿孔装备智能作业系统”项目荣获“中国有色金属工业科学技术奖二等奖”。 穿孔作业是传统非煤矿山开采的关键环节&#xff0c;穿孔效率、穿孔质量&#xff0c;直接…

nextjs+shadcn学习

1、安装nextjs 创建文件夹next-shadcn 在文件夹中执行 npx create-next-applatest . --typescript --tailwind --eslint安装后&#xff0c;跑起来 2、安装shadcn 在刚才目录下&#xff0c;运行命令 npx shadcn-uilatest init目录中会增加两个目录 components 和lib 替换原…

MySql实战--行锁功过:怎么减少行锁对性能的影响

在上一篇文章中&#xff0c;我跟你介绍了MySQL的全局锁和表级锁&#xff0c;今天我们就来讲讲MySQL的行锁。 MySQL的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁&#xff0c;比如MyISAM引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁&#xf…

通天星CMSV6 车载定位监控平台 任意文件上传漏洞复现(XVE-2023-23454)

0x01 产品简介 通天星CMSV6车载定位监控平台拥有以位置服务、无线3G/4G视频传输、云存储服务为核心的研发团队,专注于为定位、无线视频终端产品提供平台服务,通天星CMSV6产品覆盖车载录像机、单兵录像机、网络监控摄像机、行驶记录仪等产品的视频综合平台。 0x02 漏洞概述 …

【Chiplet】技术总结

Chiplet基本知识点汇总 1. Wafer, die, chip, cell的区分2. MCM, SiP, SoC, Chiplet的区别4. Chiplets的先进封装5. Chiplet发展阶段 Chiplet基本知识点汇总 1. Wafer, die, chip, cell的区分 Wafer: 晶圆&#xff0c;指一整个晶圆硅片。 Die: 从晶圆上切分下来的小方格&a…

Vue3+.NET6前后端分离式管理后台实战(十)

1&#xff0c;Vue3.NET6前后端分离式管理后台实战&#xff08;十&#xff09;已经在订阅号发布有兴趣的可以关注一下&#xff01; 感兴趣请关注订阅号谢谢&#xff01; 代码已经上传gitee

C++--内联函数

当调用一个函数时&#xff0c;程序就会跳转到该函数&#xff0c;函数执行完毕后&#xff0c;程序又返回到原来调用该函数的位置的下一句。 函数的调用也需要花时间&#xff0c;C中对于功能简单、规模小、使用频繁的函数&#xff0c;可以将其设置为内联函数。 内联函数&#xff…

【SQL】1667. 修复表中的名字(UPPER()、LOWER()、SUBSTRING()、CONCAT())

前述 SQL中字符串截取函数(SUBSTRING) SQL 字母大小写转换函数UPPER()、UCASE()、LOWER()和LCASE() 题目描述 leetcode题目&#xff1a;1667. 修复表中的名字 Code select user_id, concat(upper(substring(name, 1, 1)),lower(substring(name, 2)) ) as name from Users o…

基于springboot+vue+Mysql的篮球论坛系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

K8S之Configmap的介绍和使用

Configmap Configmap概述Configmap的简介Configmap能解决的问题Configmap应用场景局限性 Configmap创建方法通过命令行直接创建通过文件创建指定目录创建编写Configmap资源清单Yaml文件 Configmap的使用案例通过环境变量引入&#xff1a;使用configMapKeyRef通过环境变量引入&a…

零刻sei12 windows10 限制cpu最高频率,降低cpu功耗,调整风扇转速

为什么要降低cpu功耗 虽然风扇声音本身不大,但是我想在自习室用电脑,突然的风扇声音还是会影响到他人. 由于迷你主机集成度比较高不太可能换散热器,所以只能降低cpu功耗. 我的系统 版本 Windows 10 IoT 企业版 LTSC 版本号 21H2 安装日期 ‎2023/‎12/‎18 操作系统…

数据分析之Tebleau 的度量名称和度量值

度量名称 包含所有的维度 度量值 包含所有的度量 度量名称包含上面所有的维度&#xff0c;度量值包含上面所有的度量 当同时创建两个或两个以上度量或维度时&#xff0c;会自动创建度量名称和度量值 拖入省份为行(这会是还没有值的) 可以直接将销售金额拖到数值这里 或者将销售…

Android笔记(三十):PorterDuffXfermode实现旋转进度View

背景 核心原理是使用PorterDuffXfermode Path来绘制进度&#xff0c;并实现圆角 效果图 Android笔记(三十)效果演示 进度条绘制步骤 将ImageView矩形七个点的坐标存储起来&#xff08;configNodes&#xff09; 他们对应着7个不同的刻度&#xff0c;每个刻度的值 i * &#…

JAVAEE之网络编程

1.网络编程 网络编程&#xff0c;指网络上的主机&#xff0c;通过不同的进程&#xff0c;以编程的方式实现网络通信&#xff08;或称为网络数据传输&#xff09;。 当然&#xff0c;我们只要满足进程不同就行&#xff1b; 所以即便是同一个主机&#xff0c;只要是不同进程&am…

【MATLAB源码-第173期】基于matlab的RS编码的2FSK通信系统误码率仿真,通过AWGN信道输出误码率曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 通信系统的基本框架 在现代通信系统中&#xff0c;数据的传输通常涉及四个基本步骤&#xff1a;源编码、信道编码、调制和传输。源编码主要负责压缩数据&#xff0c;减少传输的数据量。信道编码则通过添加冗余信息来提高传输…

扫雷(蓝桥杯)

题目描述 小明最近迷上了一款名为《扫雷》的游戏。其中有一个关卡的任务如下&#xff0c; 在一个二维平面上放置着 n 个炸雷&#xff0c;第 i 个炸雷 (xi , yi ,ri) 表示在坐标 (xi , yi) 处存在一个炸雷&#xff0c;它的爆炸范围是以半径为 ri 的一个圆。 为了顺利通过这片土…