文章目录
- 1. SparkSQL
- 1.1 总述
- 1.2 数据格式
- 1.3 转化关系
- 1.3.1 RDD转DataFrame | Dataset
- 1.3.2 DataFrame转Dataset
- 1.3.3 DataFrame | Dataset转RDD
- 1.3.4 Dataset转DataFrame
- 2. DataFrame 数据导入
- 2.1 准备工作
- pom.xml
- log4j.properties
- 2.2 RDD转换DataFrame
- 2.2.1 模式1
- 2.2.2 模式2
1. SparkSQL
1.1 总述
SparkSQL是Spark在数据处理上的上层抽象。我们知道,Spark在大数据数据仓库管理中替代的是MapReduce,作为数据仓库的执行引擎,Spark相较于MapReduce在数据逻辑抽象和物理计算层面上最大的不同在于:
-
Spark将数据本身管理抽象成为一个个RDD[Resiliant Distributed Dataset],方便Spark进程在内存运算中进行分配、懒加载、shuffle等操作的管理,同时也方便数据在集群中以更大的粒度进行分发与交换,同时能够在序列化、反序列化与压缩的过程中节省资源与运算时间。这一点上Spark与MapReduce相比可以理解为是C面向过程编程的设计思想与C++面向对象的设计思想之间的差别,Spark将数据封装为对象,虽然二者同样都是对文件进行逐行分解,但是RDD显然对内存的利用效率更高
-
Spark能够提供上层API记录数据的元信息[metadata],并为检索这一类信息提供封装好的API。我们知道,大数据存储往往涉及到大量半结构化甚至是非结构化的数据,在Hadoop集群中甚至是Amazon S3云存储服务器中,大量的日志资料与埋点数据都是以大文件的形式进行存储的。分布式文件系统顺序写、追加写的特征使得我们很难对数据进行以行为单位的增删改操作,因此对于源数据的加工将极大依赖于执行引擎。Hive借助MR进行服务的提供,HBase能够借助自身编写的引擎提供部分受限符合SQL规范的DSL,而Spark通过SparkSQL几乎能够在Spark的执行引擎下提供几乎全量SQL规范下的spark SQL DSL
1.2 数据格式
Spark SQL 对数据的封装主要体现在三个内置格式上:
- RDD
- DataFrame = Dataset[Row]
- Dataset
搞清楚这三者的关系,实际上只需要牢记:RDD是最为底层的数据管理结构,DataFrame和Dataset都是记录了列关系的数据管理结构
D a t a F r a m e = R D D + S c h e m a DataFrame = RDD+ Schema DataFrame=RDD+Schema
其中Schema是一个StructType对象,StructType记录着所有数据StructField(key,value)的List对象。RDD在DataFrame中常常以case class的形式进行存储,Dataset与DataFrame的不同之处就在于这个case class对于Dataset来说不是一个具体的class而是一个spark内置定义的Row对象,Spark能够根据Row对象中存储的信息动态推断出字段的数据类型
D a t a F r a m e = D a t a s e t [ R o w ] DataFrame = Dataset[Row] DataFrame=Dataset[Row]
因此,DataFrame和Dataset都握有相应的RDD,我们均可以通过二者的无参函数字面量rdd获取相应的RDD对象
1.3 转化关系
∗ * ∗ 注:以下所有代码均默认运行在伪分布式hadoop集群-单机spark模式之下
1.3.1 RDD转DataFrame | Dataset
简单来说,就是 toDF() 以及 toDS() 两个方法,
1.3.2 DataFrame转Dataset
简单来说,就是as[Bean]方法,由于DataFrame会将Bean直接泛化成为Row对象,因此DataFrame转Dataset时需要显式指定Bean的相关类型,而反过来就直接使用 toDF() 即可
这个Bean实际上就是case class
1.3.3 DataFrame | Dataset转RDD
由于DataFrame | Dataset都握有相应的RDD对象,我们只需调用无参函数字面量rdd即可
1.3.4 Dataset转DataFrame
如前所述,使用 toDF() 即可,但是这个操作会丢失掉Bean的相应值而变成Row,当此DataFrame再转换回Dataset时,其Schema将会变为Row对象而不是之前的Bean对象。
2. DataFrame 数据导入
在这里,我们不使用spark-shell进行操作,而是直接通过自定义java程序连接spark集群提交spark任务
2.1 准备工作
pom.xml
首先, 我们需要构建相应的pom文件坐标,需要注意的是,如果我们使用spark连接MySQL,我们需要导入mysql-connector,如果我们需要连接hive,除去导入hive-metastore包外,还要同步导入spark-hive连接包
需要注意的是,由于spark中使用了slf4j的接口包,我们需要同步导入一个slf4j-nop的实现包,日志系统才能够正常运行
最后,为了scala文件能够正常编译,我们在build栏目下同步导入sbt支持包
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>org.example</groupId><artifactId>spark-test</artifactId><version>1.0-SNAPSHOT</version><properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target><spark.version>3.5.0</spark.version><scala.version>2.13.8</scala.version><hive.version>3.1.3</hive.version></properties><dependencies><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.13</artifactId><version>${spark.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.13</artifactId><version>${spark.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.scala-lang/scala-library --><dependency><groupId>org.scala-lang</groupId><artifactId>scala-library</artifactId><version>${scala.version}</version><scope>provided</scope></dependency><!-- https://mvnrepository.com/artifact/org.scala-lang/scala-reflect --><dependency><groupId>org.scala-lang</groupId><artifactId>scala-reflect</artifactId><version>${scala.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-nop --><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-nop</artifactId><version>2.0.12</version><scope>test</scope></dependency><!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java --><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.27</version></dependency><!-- spark hive compilation --><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-hive --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-hive_2.12</artifactId><version>${hive.version}</version></dependency><!-- https://mvnrepository.com/artifact/org.apache.hive/hive-metastore --><dependency><groupId>org.apache.hive</groupId><artifactId>hive-metastore</artifactId><version>${hive.version}</version></dependency></dependencies><build><finalName>${project.artifactId}</finalName><outputDirectory>target/classes</outputDirectory><testOutputDirectory>target/test-classes</testOutputDirectory><sourceDirectory>src/main/scala</sourceDirectory><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><configuration><source>1.8</source><target>1.8</target></configuration></plugin><plugin><!--scala原始在sbt(类似java maven)上做开发,现可以用这个插件来在maven中进行开发--><groupId>org.scala-tools</groupId><artifactId>maven-scala-plugin</artifactId><version>2.15.2</version><executions><execution><id>scala-compile-first</id><goals><goal>compile</goal></goals><configuration><includes><include>**/*.scala</include></includes><scalaVersion>2.13.8</scalaVersion><args><arg>-target:jvm-1.8</arg></args></configuration></execution></executions></plugin></plugins></build>
</project>
log4j.properties
其次,我们设置log4j
log4j.rootLogger=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n# Set the default spark-shell log level to ERROR. When running the spark-shell, the
# og level for this class is used to overwrite the root logger’s log level, so that
# the user can have different defaults for the shell and regular Spark apps.log4j.logger.org.apache.spark.repl.Main=INFO
log4j.logger.org.apache.spark.sql=INFO
#Settings to quiet third party logs that are too verboselog4j.logger.org.spark_project.jetty=WARN
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=WARN
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=WARN
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=WARN
log4j.logger.org.apache.parquet=WARN
log4j.logger.parquet=WARN# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive supportlog4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
2.2 RDD转换DataFrame
下面介绍两种RDD转换DataFrame的方式
2.2.1 模式1
首先是第一种非Schema模式,这个方法要求我们首先要把RDD处理成为Bean的模式
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}import java.nio.file.Pathsobject WithTextFile {// prepare SparkSession resource service objectval spark: SparkSession = SparkSession.builder.master("local").appName("RDDtoDF").getOrCreateprivate val array: Array[(String, Int)]= Array(("Zhangsan", 19), ("Lisi", 21), ("Hanmeimei", 23))// prepare case class for DataFrame Schemacase class Person(name: String, age: Long)// introduce implicit implementation of transformation: encoderimport spark.implicits._/*** if input data is structured in explicit form* we could create one case class to store schema** @param path* @return*/def structuredToDF(array:Array[(String, Int)]): DataFrame = {val rdd: RDD[Person] = spark.sparkContext.parallelize(array).map(_.split(",")).map(f => Person(f(0), f(1).trim.toInt))rdd.toDF()}
2.2.2 模式2
其次是第二种Schema模式,这个方法要求我们自定义schema,并使用spark.createDataFrame(rdd, schema)方法进行DataFrame的创建
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}import java.nio.file.Pathsobject WithTextFile {// prepare SparkSession resource service objectval spark: SparkSession = SparkSession.builder.master("local").appName("RDDtoDF").getOrCreateprivate val array: Array[(String, Int)]= Array(("Zhangsan", 19), ("Lisi", 21), ("Hanmeimei", 23))// prepare case class for DataFrame Schemacase class Person(name: String, age: Long)// introduce implicit implementation of transformation: encoderimport spark.implicits._/*** if input data should be transferred into more complex form* we need to provide schema for its loading process** @param path* @return*/def customizedToDF(array:Array[(String, Int)]): DataFrame = {// schema should be like:// name:String, age:intval schema: StructType = StructType(List(StructField("name", StringType),StructField("age", IntegerType)))val rdd = spark.sparkContext.parallelize(array).map(_.split(",")).map(f => Row(f(0).toString.trim, f(1).toString.trim.toInt))spark.createDataFrame(rdd, schema)}