一:二分法算法分析
1、二分查找算法定义
二分查找又称折半查找,它是一种效率较高的查找方法。
二分查找要求:线性表是有序表,即表中结点按关键字有序,并且要用向量作为表的存储结构。
2、基本思想
(1)首先确定该区间的中点位置
(2)将待查的K值与R[mid]比较:若相等,则查找成功并返回此位置,否则须确定新的查找区间,继续二分查找
(3) ① 若R[mid].key>K,将查找区间变为**[left,mid-1]**
②若R[mid].key<K,将查找区间变为**[mid+1,right]**
3、优缺点
③ 二分查找的优点
折半查找的时间复杂度为O(logn),远远好于顺序查找的O(n)。
④ 二分查找的缺点
虽然二分查找的效率高,但是要将表按关键字排序。而排序本身是一种很费时的运算。既使采用高效率的排序方法也要花费O(nlgn)的时间。
4、二分查找常用场景
寻找一个数、寻找左侧边界、寻找右侧边界。
细节:
while循环中的不等号是否应该带等号,mid 是否应该加一等等。
5、二分查找常用框架
int binarySearch(int[] nums, int target) {
int left = 0, right = …;
while(...) {int mid = left + (right - left) / 2;if (nums[mid] == target) {...} else if (nums[mid] < target) {left = ...} else if (nums[mid] > target) {right = ...}
}
return ...;
}
分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节
计算 mid 时需要技巧防止溢出,建议写成: mid = left + (right - left) / 2
二.基本寻找与左右边界
1.寻找一个数(最基本)
搜索一个数,如果存在,返回其索引,否则返回 -1。
int binarySearch(int[] nums, int target) {
int left = 0;
int right = nums.length - 1; // 注意
while(left <= right) { // 注意int mid = (right + left) / 2;if(nums[mid] == target)return mid; else if (nums[mid] < target)left = mid + 1; // 注意else if (nums[mid] > target)right = mid - 1; // 注意}
return -1;
}
注意点(细节)分析
- 为什么 while 循环的条件中是 <=,而不是 < ?
答:因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.length。
这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。
我们这个算法中使用的是 [left, right] 两端都闭的区间。这个区间就是每次进行搜索的区间,我们不妨称为「搜索区间」(earch space)。
什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:
if(nums[mid] == target)return mid;
但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。
while(left <= right)的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候搜索区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。
while(left < right)的终止条件是 left == right,写成区间的形式就是 [right, right],或者带个具体的数字进去 [2, 2],这时候搜索区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就可能出现错误。
当然,如果你非要用 while(left < right) 也可以,我们已经知道了出错的原因,就打个补丁好了:
//…
while(left < right) {
// …
}
return nums[left] == target ? left : -1;
- 为什么 left = mid + 1,right = mid - 1?我看有的代码是 right = mid 或者 left = mid,没有这些加加减减,到底怎么回事,怎么判断?
答:刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,如何确定下一步的搜索区间呢?
当然是去搜索 [left, mid - 1] 或者 [mid + 1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除。
- 此算法有什么缺陷?
答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。
比如说给你有序数组 nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见。你也许会说,找到一个 target 索引,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的时间复杂度了。
我们后续的算法就来讨论这两种二分查找的算法。
2、寻找左侧边界的二分搜索
int left_bound(int[] nums, int target) {
if (nums.length == 0) return -1;
int left = 0;
int right = nums.length; // 注意
while (left < right) { // 注意int mid = (left + right) / 2;if (nums[mid] == target) {right = mid;} else if (nums[mid] < target) {left = mid + 1;} else if (nums[mid] > target) {right = mid; // 注意}
}
return left;
}
注意点(细节)分析
- 为什么 while(left < right) 而不是 <= ?**
答:用相同的方法分析,因为初始化 right = nums.length 而不是 nums.length - 1 。因此每次循环的「搜索区间」是 [left, right) 左闭右开。
while(left < right) 终止的条件是 left == right,此时搜索区间 [left, left) 恰巧为空,所以可以正确终止。
- 为什么没有返回 -1 的操作