数据结构:单调栈和单调队列

文章目录

  • 一、单调栈
    • 1.1、栈的思想
    • 1.2、单调栈
      • 1.2.1、单调栈的基本应用:找出数组中每个元素右侧第一个更大的元素
      • 1.2.2、单调栈的基本应用:找出数组中每个元素左侧第一个更大的元素
      • 1.2.3、单调栈拓展
      • 1.2.4、单调栈LeetCode题单
  • 二、单调队列
    • 2.1、队列的思想
    • 2.2、单调队列
      • 单调队列的应用:滑动窗口最大值
  • 三、单调栈和单调队列的区别
    • 示例解释

在学习单调队列或单调栈时,我们要先清楚,为何栈或队列是保持单增或单减,并且这样为何是有效的。比如保持单增,用单调队列的思想考虑的情况下,在遍历的过程中,我们需要解决的问题是寻找第一个比它小的(或者维护窗口中最小的元素),当前元素进队/栈时,如果栈顶或队尾存在比当前元素大的元素时,这些元素都是冗余的,因为当前元素在往后考虑时的作用 会一定更接近往后的元素且更小(更满足我们需要第一个小的要求)并且在单调队列中也更会留在窗口中。(单调栈有不同实现方式和思想,这里只描述了一种,详情请往下看)

一、单调栈

1.1、栈的思想

  栈是一种非常直观且广泛应用的数据结构,其主要特点是后进先出(LIFO,Last In, First Out)。想象一下一摞盘子或书籍,你只能从顶部添加或移除它们。栈可以临时存放一些数据,以便于之后逆序访问它,比如进制转换。
  浏览器的前后进是个很形象的例子:浏览器允许用户后退和前进浏览过的网页。这可以通过两个栈来实现:一个栈用于后退,另一个用于前进。当你访问新页面时,前进栈清空,当前页面压入后退栈。当你点击后退时,从后退栈中弹出,并将其压入前进栈。前进按钮则相反。

1.2、单调栈

  单调栈是一种特殊的栈,其元素按照单调递增或单调递减的顺序排列(根据特殊需求也可以是非减或非增序列)。单调栈用于解决那些需要寻找每个元素左侧或右侧第一个比它大(或小)的元素的问题。当新的元素被尝试加入栈时,会从栈顶开始移除破坏单调性的元素,直到保持栈的单调性为止,然后将新元素入栈。
应用示例:在一个数组中,为每个元素找出其右侧或左侧第一个更大的元素。LeetCode:柱状图中最大的矩形

如果要求的是左侧或右侧的最大/小值(而不是第一个更大/小的),可以用动态规划求解,如LeetCode:接雨水

1.2.1、单调栈的基本应用:找出数组中每个元素右侧第一个更大的元素

  使用单调栈解决这个问题的基本思路是遍历数组,对于每个元素,我们想找到它右侧第一个更大的元素。单调栈可以帮助我们追踪已经遍历过的元素,并保持它们的顺序,以便快速找到每个元素的答案。

  • 初始化一个空栈,用于存放数组元素的索引。
  • 遍历数组中的每个元素:
    • 当栈不为空且当前元素大于栈顶索引对应的元素时,表示找到了栈顶元素右侧的第一个更大元素。此时,将栈顶元素出栈,并记录当前元素为栈顶元素右侧第一个更大的元素。
    • 将当前元素的索引入栈。
  • 对于栈中剩余的元素,它们右侧没有更大的元素。
#include <vector>
#include <stack>
using namespace std;class Solution {
public:vector<int> nextGreaterElement(vector<int>& nums) {int n = nums.size();vector<int> ans(n, -1); // 初始化结果数组,假设每个元素的右侧没有更大的元素stack<int> myStack; // 用于存储索引,栈顶到栈底单调递减for (int i = 0; i < n; ++i) {// 当前元素大于栈顶元素对应的值时,说明找到了一个更大的元素while (!myStack.empty() && nums[i] > nums[myStack.top()]) {ans[myStack.top()] = nums[i]; // 更新栈顶元素的下一个更大元素myStack.pop(); // 弹出栈顶元素}// 将当前元素的索引入栈myStack.push(i);}// 对于栈中剩余的元素,它们的右侧没有更大的元素,ans中已经预设为-1,因此无需再操作return ans;}
};

1.2.2、单调栈的基本应用:找出数组中每个元素左侧第一个更大的元素

  可以直接使用1.2.1的方法反向扫描,反向扫描的右边实际上是原来的左边。如果在一个问题中同时求这俩,那用反向扫描肯定是最便捷的方式。 也可以直接从左往右扫描,如果栈顶元素比当前元素小则弹栈,直到遇到比当前元素大的则是左侧第一个更大元素。(这和单调队列的弹出队列的方式很像,因为比它小的不仅对以后没用,对当前元素来说也没用。)

#include <vector>
#include <stack>
using namespace std;class Solution {
public:vector<int> leftGreaterElement(vector<int>& nums) {int n = nums.size();vector<int> ans(n, -1); // 初始化结果数组,假设每个元素的左侧没有更大的元素stack<int> myStack; // 用于存储索引,栈顶到栈底单调递减for (int i = 0; i < n; ++i) {// 当前元素大于栈顶元素对应的值时,说明当前元素是遍历到目前为止的最大元素// 这里不需要像找右侧元素那样进行元素的更新,因为我们关心的是左侧元素while (!myStack.empty() && nums[i] >= nums[myStack.top()]) {myStack.pop(); // 弹出栈顶元素}// 如果栈不为空,说明找到了当前元素左侧的第一个更大元素if (!myStack.empty()) {ans[i] = nums[myStack.top()];}// 将当前元素的索引入栈myStack.push(i);}return ans;}
};

1.2.3、单调栈拓展

  单调栈的一次遍历不仅仅只能解决找到第一个更小的问题,它一次遍历就能找到左右两边的信息,不过有一边是等高的,有时候我们可以利用这一个特点来处理问题。这样的拓展使用需要在不同问题中发现,如1.2.4列出的题单。

for (int i = 0; i < n; ++i) {//递减序while (!myStack.empty() && nums[i] >= nums[myStack.top()]) {//右侧if(nums[i]>nums[myStack.top()]) 则能找到右侧更大,但可能出现相等的情况,可能相等的情况并不影响答案//所以需要有这种考虑和想法,以便于后面遇到这样的问题能够思考到,然后利用起来myStack.pop(); // 弹出栈顶元素}if (!myStack.empty()) {left_max[i] = nums[myStack.top()];//左边更大一定是正确的}myStack.push(i);
}

1.2.4、单调栈LeetCode题单

在这里插入图片描述

二、单调队列

2.1、队列的思想

  队列是一种先进先出(First In, First Out,FIFO)的数据结构,其工作原理类似于日常生活中的排队等待。在队列中,元素从一端(通常称为队尾)添加,从另一端(称为队头)进行移除。这种结构确保了元素被处理的顺序正是它们被添加到队列中的顺序,就像人们在商店结账处排队一样:先来的人先得到服务,新来的人排在队伍的末尾。

2.2、单调队列

  单调队列是一种特殊的队列,其元素同样按照单调递增或单调递减的顺序排列。不同于单调栈,单调队列支持在两端进行操作:在队列的一端添加元素,在另一端移除元素。这种结构适用于滑动窗口类的问题,其中窗口在数据序列上滑动,而我们希望快速获取窗口内的最大值或最小值。
应用示例:给定一个数组和一个窗口大小,为每个窗口找出最大值或最小值。

单调队列的应用:滑动窗口最大值

  单调队列解决的是另一个问题:给定一个数组和一个窗口大小,为每个窗口找出最大值。单调队列通过维护一个双端队列(Deque),其中保存可能成为当前窗口最大值的元素索引,确保队列是单调递减的。LeetCode求滑动窗口最大值

  • 初始化一个空的双端队列(Deque)。
  • 遍历数组中的每个元素:
    • 移除队列中所有小于当前元素的索引,因为它们不可能是包含当前元素的窗口的最大值。
    • 检查队头索引是否已经滑出窗口(即队头索引对应的元素不在当前考虑的窗口内),如果是,将其从队头移除。
    • 将当前元素的索引添加到队列尾部。
    • 对于每个窗口,队头索引总是对应该窗口的最大值。且队列里总是会有元素(因为至少当前正在遍历的元素一定在窗口中)。
#include <vector>
#include <deque>
using namespace std;class Solution {
public:vector<int> maxSlidingWindow(vector<int>& nums, int k) {deque<int> myque; // 存储的是nums的索引,保证从大到小排列vector<int> ans;for(int i = 0; i < nums.size(); ++i) {// 如果队列不为空且当前元素大于等于队列最后一个元素所对应的值,则弹出队列最后一个元素while(!myque.empty() && nums[i] >= nums[myque.back()]) {myque.pop_back();}// 将当前元素索引加入队列myque.push_back(i);// 确保队列第一个元素始终在当前滑动窗口的范围内if(myque.front() <= i - k) {myque.pop_front();}// 当索引达到窗口大小-1时,开始记录结果if(i >= k - 1) {ans.push_back(nums[myque.front()]);}}return ans;}
};

三、单调栈和单调队列的区别

  你会发现单调队列和单调栈的区别在于,是否包含一个滑动窗口,单调队列处理的之前的成员可能会"失效",但是单调栈的成员一直不会失效,因此单调队列有一个“失效”出队的操作。单调栈处理的问题中,一旦元素入栈,它们就保持有效,直到被明确地由一个满足特定条件的后来者替代;而单调队列处理的问题中,元素的有效性不仅受到队列中其他元素的影响,还受到它们是否仍然处于考虑的窗口内的影响。

示例解释

  假设你有一系列人的身高,你需要找到每个人右侧的第一个更高的人(单调栈),或者在一系列长度为k的连续子序列(即窗口)中找到最高的人(单调队列)。

  • 单调栈:当一个新人加入时,如果他比前面的人都高,那么他就成为了前面某些人右侧第一个更高的人。前面比他矮的人都不再重要,因为他们已经找到了比自己高的人。
  • 单调队列:对于每个长度为k的窗口,你想快速知道最高的人。当一个新人加入窗口时,如果他比窗口中的某些人高,那么这些比他矮的人就不可能是该窗口的最高者了。但是,窗口滑动时,最高的人可能会离开窗口,所以你需要记录下一个可能最高的人。

  通过使用单调栈和单调队列,你可以高效地解决这些问题,而不需要对每个元素或每个窗口进行独立的比较。每个元素进栈(队)一次,出栈(队)一次,因此时间复杂度均为O(n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/780189.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java数据结构与算法刷题-----LeetCode34. 在排序数组中查找元素的第一个和最后一个位置

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 二分查找 二分查找 解题思路&#xff1a;时间复杂度O( l o g 2 …

算法沉淀——拓扑排序

前言&#xff1a; 首先我们需要知道什么是拓扑排序&#xff1f; 在正式讲解拓扑排序这个算法之前&#xff0c;我们需要了解一些前置知识&#xff08;和离散数学相关&#xff09; 1、有向无环图&#xff1a; 指的是一个无回路的有向图。 入度&#xff1a;有向图中某点作为图…

下班搞副业成热潮:有人月入过万

近日&#xff0c;“下班后的年轻人开始搞第二事业了”成为了社交媒体上热议的话题。从繁华的都市街头到静谧的社区小巷&#xff0c;下班后的年轻人正用双手书写着属于自己的故事。 他们中有的人选择成为夜市中的一道亮丽风景线&#xff0c;摆摊售卖那些独特而富有创意的小物件&…

HarmonyOS 应用开发之启动/停止本地PageAbility

启动本地PageAbility PageAbility相关的能力通过featureAbility提供&#xff0c;启动本地Ability通过featureAbility中的startAbility接口实现。 表1 featureAbility接口说明 接口名接口描述startAbility(parameter: StartAbilityParameter)启动Ability。startAbilityForRes…

人工智能|推荐系统——搜索引擎广告

原文题目 Dark sides of artificial intelligence: The dangers of automated decision-making in search engine advertising(JASIST,2023) 人工智能的阴暗面:搜索引擎广告自动决策的危险 摘要 随着人工智能应用的日益广泛,搜索引擎供应商越来越多地要求广告商使用基于机…

k8s局域网通过operator部署rabbitmq

参考&#xff1a;Installing RabbitMQ Cluster Operator in a Kubernetes Cluster | RabbitMQ 1、下载cluster-operator.yml wget https://github.com/rabbitmq/cluster-operator/releases/download/v2.7.0/cluster-operator.yml 2、拉取对应的镜像&#xff0c;这里的版本是根…

MFC:组合框ComboBox的使用

在MFC中有一个CComboBox类&#xff0c;内部封装了组合框的各种操作。ComboBox控件是由一个文本输入控件和一个下拉菜单组成的&#xff0c;使用时可以从预先定义的列表里选择一个选项&#xff0c;使用起来很方便。下面将以实例方式介绍组合框的使用方法。 在VS2022中首先…

什么是搜索引擎(SEO)爬虫它们是如何工作的?

什么是搜索引擎&#xff08;SEO&#xff09;爬虫&它们是如何工作的&#xff1f; 你的网站上有蜘蛛&#x1f577;️。别抓狂&#xff01;我说的不是真正的八条腿的蜘蛛&#x1f577;️。 我指的是搜索引擎优化爬虫。他们是实现SEO的机器人。每个主要的搜索引擎都使用爬虫来…

3.java openCV4.x 入门-Mat之构造函数与数据类型

专栏简介 &#x1f492;个人主页 &#x1f4f0;专栏目录 点击上方查看更多内容 &#x1f4d6;心灵鸡汤&#x1f4d6;我们唯一拥有的就是今天&#xff0c;唯一能把握的也是今天 &#x1f9ed;文章导航&#x1f9ed; ⬆️ 2.hello openCV ⬇️ 4.待更新 Mat之构造函数与数…

linux正则表达式之*

1.*含义 linux正则表达式*表示重复0个或多个前一个重复字符 2.样例 正则表达式*样例 命令&#xff1a; grep -n "min*" anaconda-ks.cfg #找出含有mi、min、minn等字符串的行。注&#xff1a;因为*可以是0个&#xff0c;所以mi也是符合搜索字符串&#xff0c;另…

linux centos7.9 weblogic14c java1.8.401 安装部署流程

一、获取安装包&#xff1a; Java1.8.401&#xff1a;Java Downloads | Oracle weblogic 14c&#xff1a;https://download.oracle.com/otn/nt/middleware/14c/14110/fmw_14.1.1.0.0_wls_lite_Disk1_1of1.zip 选generic版本 二、将安装包传到Linux服务器上 方法不限&#xf…

物理寻址和功能寻址,服务器不同的应答策略和NRC回复策略

1&#xff1a;功能寻址&#xff0c;服务器应答与NRC回复策略 详细策略上&#xff0c;又分为服务有子功能&#xff0c;和不存在子功能。 1.1功能寻址&#xff0c;存在子功能 存在子功能的情况下&#xff0c;又分为supress postive response &#xff08;即子功能字节的bit7&a…

Servlet基础 管理员注册页面

管理员注册页面 index.jsp <% page language"java" import"java.util.*" pageEncoding"UTF-8"%> <% String path request.getContextPath(); String basePath request.getScheme()"://"request.getServerName()":&quo…

互联网摸鱼日报(2024-03-29)

互联网摸鱼日报(2024-03-29) 36氪新闻 获LG战略投资6000万美元&#xff0c;「Bear Robotics」搭建机器人实时反馈平台&#xff5c;硬氪首发 亏损收窄55.7%&#xff0c;Keep仍需挖金 业绩快报&#xff5c;广汽集团2023全年汇总营收约5023亿元&#xff0c;全年派息15.7亿元 海…

搜索与图论——bellman—ford算法、spfa算法求最短路

bellman-ford算法 时间复杂度O(nm) 在一般情况下&#xff0c;spfa算法都优于bf算法&#xff0c;但遇到最短路的边数有限制的题时&#xff0c;只能用bf算法 bf算法和dijkstra很像 #include<iostream> #include<queue> #include<cstring> #include<algori…

新数字时代的启示:揭开Web3的秘密之路

在当今数字时代&#xff0c;随着区块链技术的不断发展&#xff0c;Web3作为下一代互联网的概念正逐渐引起人们的关注和探索。本文将深入探讨新数字时代的启示&#xff0c;揭开Web3的神秘之路&#xff0c;并探讨其在未来的发展前景。 1. Web3的定义与特点 Web3是对互联网未来发…

安装docker 并搭建出一颗爱心树

1、docker介绍 Docker 是⼀个开源的容器运⾏时软件&#xff08;容器运⾏时是负责运⾏容器的软件&#xff09;&#xff0c;基于 Go 语 ⾔编写&#xff0c;并遵从 Apache2.0 协议开源。 Docker可以让开发者打包⾃⼰的应⽤以及依赖到⼀个轻量的容器中&#xff0c;然后发布到任何…

在 Linux/Ubuntu/Debian中创建、复制和删除文件和目录

要在 Linux 中创建、复制和删除文件和目录&#xff0c;可以使用各种命令。 以下是一些常用的&#xff1a; 1、创建目录&#xff1a; mkdir 目录名创建目录层次结构&#xff1a; mkdir -p 目录路径/子目录创建文件&#xff1a; touch 文件名4.复制文件&#xff1a; cp 源文件…

如何通过针对iOS的动态分析技术绕过反调试机制

在这篇文章中&#xff0c;我们将跟大家介绍和分析一种针对iOS的新型安全研究技术&#xff0c;该技术能够让iOS应用程序的调试过程更加轻松&#xff0c;并解决那些可能会延缓我们步伐的阻碍。 如果你要对一个采用了反调试技术的iOS应用程序或二进制文件进行调试的话&#xff0c;…

民航电子数据库:CAEMigrator迁移数据库时总是卡死

目录 一、场景二、异常情况三、排查四、应急方案 一、场景 1、对接民航电子数据库 2、将mysql数据库迁移到cae数据库 3、使用CAEMigrator迁移工具进行数据库迁移时&#xff0c;该工具会卡死&#xff08;不清楚是否是部署cae服务的服务器资源导致&#xff09; 二、异常情况 …