斜率优化dp 笔记

任务安排1

有 N 个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变。

机器会把这 N 个任务分成若干批,每一批包含连续的若干个任务。

从时刻 00 开始,任务被分批加工,执行第 i 个任务所需的时间是 Ti。

另外,在每批任务开始前,机器需要 S 的启动时间,故执行一批任务所需的时间是启动时间 S 加上每个任务所需时间之和。

一个任务执行后,将在机器中稍作等待,直至该批任务全部执行完毕。

也就是说,同一批任务将在同一时刻完成。

每个任务的费用是它的完成时刻乘以一个费用系数 Ci。

请为机器规划一个分组方案,使得总费用最小。

输入格式

第一行包含整数 N。

第二行包含整数 S。

接下来 N行每行有一对整数,分别为 Ti 和 Ci,表示第 i 个任务单独完成所需的时间 Ti 及其费用系数 Ci。

输出格式

输出一个整数,表示最小总费用。

数据范围

1≤N≤5000,
0≤S≤50,
1≤Ti,Ci≤100

输入样例:
5
1
1 3
3 2
4 3
2 3
1 4
输出样例:
153

 f[i]表示选好前i个任务的最小值

关键点在于把每次开始的S时间造成的全部后续影响加到当前这次的操作中,这样就不用考虑之前启动了几次机器了,取消了后效性

虽然过程中的f[1~n-1]的设计的值与状态设计不一定相同但f[n]一定是相同的 

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 5010;int n, S;
ll T[N], C[N], sum[N];
ll f[N];int main()
{IOScin >> n >> S;for(int i = 1; i <= n; i ++)cin >> T[i] >> C[i];for(int i = 1; i <= n; i ++){sum[i] = sum[i - 1] + C[i];T[i] += T[i - 1];}for(int i = 1; i <= n; i ++){f[i] = 2e18;for(int j = 1; j <= i; j ++)//[j, i]{//关键点在于把每次开始的S时间造成的全部后续影响加到当前这次的操作中//虽然过程中的f[1~n-1]的设计的值与状态设计不一定相同但f[n]一定是相同的 ll res = f[j - 1] + T[i] * (sum[i] - sum[j - 1]) + S * (sum[n] - sum[j - 1]);f[i] = min(f[i], res);}}cout << f[n];return 0;
}

任务安排2

有 N个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变。

机器会把这 N 个任务分成若干批,每一批包含连续的若干个任务。

从时刻 0 开始,任务被分批加工,执行第 i 个任务所需的时间是 Ti。

另外,在每批任务开始前,机器需要 S 的启动时间,故执行一批任务所需的时间是启动时间 S 加上每个任务所需时间之和。

一个任务执行后,将在机器中稍作等待,直至该批任务全部执行完毕。

也就是说,同一批任务将在同一时刻完成。

每个任务的费用是它的完成时刻乘以一个费用系数 Ci。

请为机器规划一个分组方案,使得总费用最小。

输入格式

第一行包含整数 N。

第二行包含整数 S。

接下来 N 行每行有一对整数,分别为 Ti 和 Ci,表示第 i 个任务单独完成所需的时间 Ti 及其费用系数 Ci。

输出格式

输出一个整数,表示最小总费用。

数据范围

1≤N≤3×1e5,
1≤Ti,Ci≤512,
0≤S≤512

输入样例:
5
1
1 3
3 2
4 3
2 3
1 4
输出样例:
153

 除了数据范围其余和上一题一样

把j - 1看为 j可推出的公式:f[i]=f[j]+T[i]*(C[i]-C[j])+S*(C[n]-C[j])

可以发现当i固定时f[i]、C[i]、T[i]为定值,有两个未知量C[j]和f[j]

设f[j]为y,C[j]为x,整理一下式子

f[j]=(T[i] + S) * C[j] + f[i] - T[i]*C[i] - S*C[n]

约等于y = kx + b

可以发现截距b越小f[i]就越小,此时便来到了真正的斜率优化

找到下面最外围的凸包,找到第一个斜率大于k的那条边的左端点,此点就是在k斜率下到达y轴时最低的那个点(因为k>0° && k < 90°)

找这个凸包的办法:取出后两个点(x1,y1),(x2,y2)与当前点(x3,y3)比,如果第一个点和第二个点的斜率大于第一个点和第三个点的斜率就删掉最后一个点。循环往复。最后再加进这个点。

一般来说是用二分去找的

但这题还有点小性质,就是斜率k在不断变大,因此可以用类似双指针+单调队列的方式解决该问题(只是和单调队列很像)

任务安排3

有 N 个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变。

机器会把这 N 个任务分成若干批,每一批包含连续的若干个任务。

从时刻 0 开始,任务被分批加工,执行第 i 个任务所需的时间是 Ti。

另外,在每批任务开始前,机器需要 S 的启动时间,故执行一批任务所需的时间是启动时间 S 加上每个任务所需时间之和。

一个任务执行后,将在机器中稍作等待,直至该批任务全部执行完毕。

也就是说,同一批任务将在同一时刻完成。

每个任务的费用是它的完成时刻乘以一个费用系数 Ci。

请为机器规划一个分组方案,使得总费用最小。

输入格式

第一行包含两个整数 N 和 S。

接下来 N 行每行有一对整数,分别为 Ti 和 Ci,表示第 i 个任务单独完成所需的时间 Ti 及其费用系数 Ci。

输出格式

输出一个整数,表示最小总费用。

数据范围

1≤N≤3×105,
0≤S,Ci≤512,
−512≤Ti≤512

输入样例:
5 1
1 3
3 2
4 3
2 3
1 4
输出样例:
153

这道题只能用二分了

过程会爆ll记得开int128

还有注意同一条线上的多个点只能存在最边缘的两个,中间的要全删掉

举个例子 

1、2两点都符合要求,但1更好,可能会错求成2

1、2两点都行,但要选1而不能选2

但我写的二分会找到最左边的点,所以不是这里的问题,思来想去与第二题还有一点不同,就是S和T下限从1变成了0,就会出现横坐标不变的情况,出现了斜率无限大的情况,所以出现了=的情况

类似的情况会出现,造成难以估量的bug,所以,凸包一定不要留线段中间的点!!!

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 300010;int n, S;
ll T[N], C[N];
ll f[N];
int q[N];int main()
{IOScin >> n >> S;for(int i = 1; i <= n; i ++)cin >> T[i] >> C[i];for(int i = 1; i <= n; i ++){C[i] += C[i - 1];T[i] += T[i - 1];}int hh = 0, tt = -1;q[++ tt] = 0;for(int i = 1; i <= n; i ++){int l = hh, r = tt;while(l < r){int mid = l + r >> 1;ll x1 = C[q[mid]], y1 = f[q[mid]];ll x2 = C[q[mid + 1]], y2 = f[q[mid + 1]];if(y2 - y1 >= (T[i] + S) * (x2 - x1))r = mid;else l = mid + 1;} int j = q[l];f[i] = f[j] + T[i] * (C[i] - C[j]) + S * (C[n] - C[j]);ll x3 = C[i], y3 = f[i];while(hh < tt){ll x1 = C[q[tt - 1]], y1 = f[q[tt - 1]];ll x2 = C[q[tt]], y2 = f[q[tt]];//注意一定是>= !!!!!!if((__int128)(y2 - y1) * (x3 - x1) >= (__int128)(y3 - y1) * (x2 - x1))tt --;else break;}q[++ tt] = i;}cout << f[n];return 0;
}

运输小猫

小 S 是农场主,他养了 M 只猫,雇了 P 位饲养员。

农场中有一条笔直的路,路边有 N 座山,从 1 到 N 编号。

第 i 座山与第 i−1 座山之间的距离为 Di。

饲养员都住在 1 号山。

有一天,猫出去玩。

第 i 只猫去 Hi 号山玩,玩到时刻 Ti 停止,然后在原地等饲养员来接。

饲养员们必须回收所有的猫。

每个饲养员沿着路从 1 号山走到 N 号山,把各座山上已经在等待的猫全部接走。

饲养员在路上行走需要时间,速度为 1 米/单位时间。

饲养员在每座山上接猫的时间可以忽略,可以携带的猫的数量为无穷大。

例如有两座相距为 1 的山,一只猫在 2 号山玩,玩到时刻 3 开始等待。

如果饲养员从 1 号山在时刻 2 或 3 出发,那么他可以接到猫,猫的等待时间为 0 或 1。

而如果他于时刻 1 出发,那么他将于时刻 2 经过 2 号山,不能接到当时仍在玩的猫。

你的任务是规划每个饲养员从 1 号山出发的时间,使得所有猫等待时间的总和尽量小。

饲养员出发的时间可以为负。

输入格式

第一行包含三个整数 N,M,P。

第二行包含 n−1 个整数,D2,D3,…,DN。

接下来 M 行,每行包含两个整数 Hi 和 Ti。

输出格式

输出一个整数,表示所有猫等待时间的总和的最小值。

数据范围

2≤N≤1e5,
1≤M≤1e5,
1≤P≤100,
1≤Di<1000,
1≤Hi≤N,
0≤Ti≤1e9

输入样例:
4 6 2
1 3 5
1 0
2 1
4 9
1 10
2 10
3 12
输出样例:
3

 

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 110, M = 100010;int n, m, p;
ll f[N][M];//前i个人,收回前j只猫
ll d[M], a[M];
int q[M];
ll sum[M];ll gety(int i, int k)
{return f[i - 1][k] + sum[k];
}int main()
{IOScin >> n >> m >> p;for(int i = 2; i <= n; i ++){cin >> d[i];d[i] += d[i - 1];}for(int i = 1; i <= m; i ++){int h, t;cin >> h >> t;a[i] = t - d[h];}sort(a + 1, a + 1 + m);for(int i = 1; i <= m; i ++)sum[i] = sum[i - 1] + a[i];memset(f, 0x3f, sizeof f);//排除i个人带回0只小猫的代价为0for(int i = 0; i <= p; i ++)f[i][0] = 0;//派出0个人只有可能带回0只小猫 即f[0][0] = 0;已被包含for(int i = 1; i <= p; i ++){int hh = 0, tt = -1;q[++ tt] = 0;for(int j = 1; j <= m; j ++){//先把斜率小于a[j]的去掉while(hh < tt && gety(i, q[hh + 1]) - gety(i, q[hh]) < a[j] * (q[hh + 1] - q[hh]))hh ++;int k = q[hh];f[i][j] = f[i - 1][k] - sum[j] + sum[k] + j * a[j] - k * a[j];ll x3 = j, y3 = gety(i, j);while(hh < tt){ll x1 = q[tt - 1], y1 = gety(i, q[tt - 1]);ll x2 = q[tt], y2 = gety(i, q[tt]);if((y2 - y1) * (x3 - x1) >= (y3 - y1) * (x2 - x1))tt --;else break;}q[++ tt] = j;}}cout << f[p][m];return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/779580.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS 应用开发之UIAbility组件启动模式

UIAbility的启动模式是指UIAbility实例在启动时的不同呈现状态。针对不同的业务场景&#xff0c;系统提供了三种启动模式&#xff1a; singleton&#xff08;单实例模式&#xff09;multiton&#xff08;多实例模式&#xff09;specified&#xff08;指定实例模式&#xff09;…

工厂能耗管控物联网解决方案

工厂能耗管控物联网解决方案 工厂能耗管控物联网解决方案是一种创新的、基于先进技术手段的能源管理系统&#xff0c;它深度融合了物联网&#xff08;IoT&#xff09;、云计算、大数据分析以及人工智能等前沿科技&#xff0c;以实现对工业生产过程中能源消耗的实时监测、精确计…

鸿蒙OS开发实战:【Socket小试MQTT连接】

本篇分享一下 HarmonyOS 中的Socket使用方法 将从2个方面实践&#xff1a; HarmonyOS 手机应用连接PC端 SocketServerHarmonyOS 手机应用连接MQTT 服务端 通过循序渐进的方式&#xff0c;全面了解实践HarmonyOS中的Socket用法 学习本章前先熟悉文档开发知识更新库gitee.com…

Pytorch入门实战 P4-猴痘图片,精确度提升

目录 一、前言&#xff1a; 二、前期准备&#xff1a; 1、设备查看 2、导入收集到的数据集 3、数据预处理 4、划分数据集&#xff08;8:2&#xff09; 5、加载数据集 三、搭建神经网络 四、训练模型 1、设置超参数 2、编写训练函数 3、编写测试函数 4、正式训练 …

C语言例4-30:将一个正整数的各位数字逆序输出

算法分析&#xff1a; 提取某一个正整数的最末一位数字&#xff0c;采用取模10的余数获得&#xff0c;以此类推即可。 代码如下&#xff1a; //将一个正整数的各位数字逆序输出 #include<stdio.h> int main(void) {int i,r;printf("输入一个正整数&#xff1a; \…

代码随想录算法训练营第三十八天 | 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

代码随想录算法训练营第三十八天 | 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 509. 斐波那契数题目解法 70. 爬楼梯题目解法 746. 使用最小花费爬楼梯题目解法 感悟 509. 斐波那契数 题目 解法 使用动态规划 class Solution { public:int fib(int n) {if(n <…

如何准备科学海报

科学会议上的海报展示可以为早期职业研究人员提供宝贵的机会来练习他们的沟通技巧&#xff0c;获得有关他们研究的反馈&#xff0c;并扩大他们的网络。“通过与其他研究人员一对一地讨论我的工作&#xff0c;[我发现]我可以确定哪些工作做得好&#xff0c;哪些需要改进&#xf…

GEE22:基于目视解译的土地利用分类(随机森林监督分类)

采样点信息&#xff1a; 设置一下采样点参数&#xff1a; 代码&#xff1a; //设置研究区位置 var table ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019"); var roi table.filter(ee.Filter.eq(provinces,beijing)); Map.centerObjec…

函数重载和引用

目录 一&#xff1a;函数重载 1.1函数重载的概念 1.2为什么C支持函数重载&#xff0c;而C语言不支持呢&#xff1f; 1.2.1结论 1.2.2分析 二&#xff1a;引用 2.1引用概念 2.2引用特性 ​编辑 2.3常引用 2.4使用场景 一&#xff1a;函数重载 在自然语言中&#x…

浏览器工作原理与实践--块级作用域:var缺陷以及为什么要引入let和const

在前面《07 | 变量提升&#xff1a;JavaScript代码是按顺序执行的吗&#xff1f;》这篇文章中&#xff0c;我们已经讲解了JavaScript中变量提升的相关内容&#xff0c;正是由于JavaScript存在变量提升这种特性&#xff0c;从而导致了很多与直觉不符的代码&#xff0c;这也是Jav…

数字化坚鹏:小熊电器面向数字化转型的大数据顶层设计实践培训

小熊电器面向数字化转型的大数据顶层设计实践培训圆满结束 ——努力打造“数据技术营销”三轮驱动的数字化领先企业 小熊电器股份有限公司由李一峰创立于2006年&#xff0c;是一家专业从事创意小家电研发、设计、生产和销售的实业型企业。2019年8月23日正式在深交所挂牌上市。…

Intel Arc显卡安装Stable Diffusion

StableDiffusion是一种基于深度学习的文本到图像生成模型&#xff0c;于2022年发布。它主要用于根据文本描述生成详细图像&#xff0c;也可应用于其他任务&#xff0c;如内补绘制、外补绘制和在提示词指导下生成图像翻译。通过给定文本提示词&#xff0c;该模型会输出一张匹配提…

gitee多用户配置

一、引言 在工作的时候我们有时候会自己创建项目Demo来实现一些功能&#xff0c;但是又不想把自己的Demo代码放到公司的仓库代码平台&#xff08;gitee&#xff09;中管理&#xff0c;于是就是想自己放到自己的Gitee中管理&#xff0c;于是就需要配置Git多用户。 本文将配置分别…

【Go】五、流程控制

文章目录 1、if2、switch3、for4、for range5、break6、continue7、goto8、return 1、if 条件表达式左右的()是建议省略的if后面一定要有空格&#xff0c;和条件表达式分隔开来{ }一定不能省略if后面可以并列的加入变量的定义 if count : 20;count < 30 {fmt.Println(&quo…

基于springboot实现课程作业管理系统项目【项目源码+论文说明】

基于springboot实现课程作业管理系统演示 摘要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;课程作业管理系统当然也不能排除在外。课程作业管理系统是以实际运用为开发背景…

Transformers —— 以通俗易懂的方式解释-Part 1

公众号:Halo咯咯,欢迎关注~ 本系列主要介绍了为ChatGPT以及许多其他大型语言模型(LLM)提供支持的Transformer神经网络。我们将从基础的Transformer概念开始介绍,尽量避免使用数学和技术细节,使得更多人能够理解这一强大的技术。 Transformers —— 以通俗易懂的方式解释…

数据结构——lesson11排序之快速排序

&#x1f49e;&#x1f49e; 前言 hello hello~ &#xff0c;这里是大耳朵土土垚~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#x…

缓存雪崩问题及解决思路

实战篇Redis 2.7 缓存雪崩问题及解决思路 缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机&#xff0c;导致大量请求到达数据库&#xff0c;带来巨大压力。 解决方案&#xff1a; 给不同的Key的TTL添加随机值利用Redis集群提高服务的可用性给缓存业务添加降…

如何制作透明文件夹?

哇&#xff01;是不是很羡慕&#xff1f; 保姆级教程来啦&#xff01; 我们先新建一个文件夹 这么辛苦写文章&#xff0c;可以给我点个关注么~

好用的AI智能便签是哪款?桌面便签哪款比较智能

随着科技的日新月异&#xff0c;我们的生活与工作中涌现出众多便捷的软件工具&#xff0c;它们不仅提升了我们的生活质量&#xff0c;更在工作效率上给予了极大的助力。其中&#xff0c;便签软件以其简单实用的特性&#xff0c;成为了许多人日常不可或缺的好帮手。而在众多便签…