Pytorch入门实战 P4-猴痘图片,精确度提升

目录

一、前言:

二、前期准备:

1、设备查看

2、导入收集到的数据集

3、数据预处理

4、划分数据集(8:2)

5、加载数据集

三、搭建神经网络

四、训练模型

1、设置超参数

2、编写训练函数

3、编写测试函数

4、正式训练

五、可视化结果

六、预测

1、预测函数

2、指定图片进行预测

七、模型保存

八、运行结果展示:

①使用原有的网络模型,测试集的精确度基本上在82%左右。

②在原有网络模型的基础上,添加了relu激活函数,

③减小学习率,

④增大学习率,


  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

一、前言:

本篇博文,主要使用猴痘数据集,来训练模型,大部分的代码还是之前的很类似,不同的地方在意,使用的模型参数不同,模型也都是类似的。这篇文章里面,你可以学会如何保存训练好的模型,如何使用保存的的模型进行预测。

如以往一样,可以先大概看下目录,你的脑海会有大概得流程。

二、前期准备:

1、设备查看

# 1、设备相关
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)

2、导入收集到的数据集

我的数据集文件夹是这样的:

①一个是带有猴痘的图片的文件夹;②一个是其他痘的文件夹;

# 2、导入数据
data_dir = './data'
data_dir = pathlib.Path(data_dir)  # 获取到文件data的名称data_paths = list(data_dir.glob('*'))  # 获取到文件夹data下面子文件夹的名称  [PosixPath('data/Others'), PosixPath('data/Monkeypox')]
classNames = [str(path).split('/')[1] for path in data_paths]  # 获取到子文件夹的名称  ['Others', 'Monkeypox']

3、数据预处理

# 3、数据处理
train_transforms = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])total_data = datasets.ImageFolder('./data',transform=train_transforms)
# print(total_data.class_to_idx)  # {'Monkeypox': 0, 'Others': 1}  total_data.class_to_idx 是一个存储了数据集类别和对应索引的字典。

4、划分数据集(8:2)

# 4、划分数据集
train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size, test_size])
# print(len(train_dataset), len(test_dataset))   # 1713  429

5、加载数据集

# 5、加载数据集
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
print('准备工作结束。。。。')

三、搭建神经网络

网络图如下:

# 猴痘的模型
class Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()'''默认stride为1;  padding为0'''self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool1 = nn.MaxPool2d(2, 2)self.conv3 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn3 = nn.BatchNorm2d(24)self.conv4 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.pool2 = nn.MaxPool2d(2, 2)self.fc = nn.Linear(24*50*50, 2)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = self.pool1(x)x = F.relu(self.bn3(self.conv3(x)))x = F.relu(self.bn4(self.conv4(x)))x = self.pool2(x)x = x.view(-1, 24*50*50)x = self.fc(x)x = self.relu(x)return xmodel = Network_bn().to(device)
print(model)

四、训练模型

1、设置超参数

# 三、训练模型
# 1、 设置超参数
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数
learn_rate = 1e-4  # 学习率
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)

2、编写训练函数

# 2、编写训练函数
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)   # 训练集大小num_batches = len(dataloader)    # 批次数目train_acc, train_loss = 0, 0for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)   # 网络输出loss = loss_fn(pred, y)  # 计算网络输出与真实值之间的差距。# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()   # 反向传播optimizer.step()  # 每一步自动更新# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3、编写测试函数

# 3、 编写测试函数def test(dataloader, model, loss_fn):size = len(dataloader.dataset)  # 测试集大小num_batches = len(dataloader)  # 批次数目test_acc, test_loss = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算损失target_pred = model(imgs)loss = loss_fn(target_pred, target)test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4、正式训练

# 正式训练
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = 'Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}'print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

五、可视化结果

# 结果可视化
warnings.filterwarnings('ignore')  # 忽略警告信息
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率epochs_range = range(epochs)plt.figure(figsize=(12,3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label="Training Acc")
plt.plot(epochs_range, test_acc, label="Test Acc")
plt.legend(loc='lower right')
plt.title('Training and Validation Acc')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label="Training Loss")
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')plt.savefig("/data/jupyter/deepinglearning_train_folder/p04_weather/resultImg.jpg")
plt.show()

六、预测

1、预测函数

classes = list(total_data.class_to_idx)
print('classes:', classes)# 预测训练集中的某张图片
predict_one_image(image_path='./data/Monkeypox/M01_01_00.jpg',model=model,transform=train_transforms,classes=classes)

2、指定图片进行预测

# 预测函数
def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_, pred = torch.max(output, 1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')

七、模型保存

# 模型保存
PATH = './model.pth'  # 保存的模型
torch.save(model.state_dict(), PATH)# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

(我是在具有GPU的服务器上训练的模型)

八、运行结果展示:

①使用原有的网络模型,测试集的精确度基本上在82%左右。

②在原有网络模型的基础上,添加了relu激活函数,

可使得精度提高2%左右。但是训练精度减少了。

③减小学习率,

使得测试精度,直线下降

④增大学习率,

也可以使得测试精确度提高2%左右,还会使得训练的精确度更好,达到98.7%

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/779570.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言例4-30:将一个正整数的各位数字逆序输出

算法分析&#xff1a; 提取某一个正整数的最末一位数字&#xff0c;采用取模10的余数获得&#xff0c;以此类推即可。 代码如下&#xff1a; //将一个正整数的各位数字逆序输出 #include<stdio.h> int main(void) {int i,r;printf("输入一个正整数&#xff1a; \…

代码随想录算法训练营第三十八天 | 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

代码随想录算法训练营第三十八天 | 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 509. 斐波那契数题目解法 70. 爬楼梯题目解法 746. 使用最小花费爬楼梯题目解法 感悟 509. 斐波那契数 题目 解法 使用动态规划 class Solution { public:int fib(int n) {if(n <…

如何准备科学海报

科学会议上的海报展示可以为早期职业研究人员提供宝贵的机会来练习他们的沟通技巧&#xff0c;获得有关他们研究的反馈&#xff0c;并扩大他们的网络。“通过与其他研究人员一对一地讨论我的工作&#xff0c;[我发现]我可以确定哪些工作做得好&#xff0c;哪些需要改进&#xf…

GEE22:基于目视解译的土地利用分类(随机森林监督分类)

采样点信息&#xff1a; 设置一下采样点参数&#xff1a; 代码&#xff1a; //设置研究区位置 var table ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019"); var roi table.filter(ee.Filter.eq(provinces,beijing)); Map.centerObjec…

函数重载和引用

目录 一&#xff1a;函数重载 1.1函数重载的概念 1.2为什么C支持函数重载&#xff0c;而C语言不支持呢&#xff1f; 1.2.1结论 1.2.2分析 二&#xff1a;引用 2.1引用概念 2.2引用特性 ​编辑 2.3常引用 2.4使用场景 一&#xff1a;函数重载 在自然语言中&#x…

浏览器工作原理与实践--块级作用域:var缺陷以及为什么要引入let和const

在前面《07 | 变量提升&#xff1a;JavaScript代码是按顺序执行的吗&#xff1f;》这篇文章中&#xff0c;我们已经讲解了JavaScript中变量提升的相关内容&#xff0c;正是由于JavaScript存在变量提升这种特性&#xff0c;从而导致了很多与直觉不符的代码&#xff0c;这也是Jav…

数字化坚鹏:小熊电器面向数字化转型的大数据顶层设计实践培训

小熊电器面向数字化转型的大数据顶层设计实践培训圆满结束 ——努力打造“数据技术营销”三轮驱动的数字化领先企业 小熊电器股份有限公司由李一峰创立于2006年&#xff0c;是一家专业从事创意小家电研发、设计、生产和销售的实业型企业。2019年8月23日正式在深交所挂牌上市。…

Intel Arc显卡安装Stable Diffusion

StableDiffusion是一种基于深度学习的文本到图像生成模型&#xff0c;于2022年发布。它主要用于根据文本描述生成详细图像&#xff0c;也可应用于其他任务&#xff0c;如内补绘制、外补绘制和在提示词指导下生成图像翻译。通过给定文本提示词&#xff0c;该模型会输出一张匹配提…

gitee多用户配置

一、引言 在工作的时候我们有时候会自己创建项目Demo来实现一些功能&#xff0c;但是又不想把自己的Demo代码放到公司的仓库代码平台&#xff08;gitee&#xff09;中管理&#xff0c;于是就是想自己放到自己的Gitee中管理&#xff0c;于是就需要配置Git多用户。 本文将配置分别…

【Go】五、流程控制

文章目录 1、if2、switch3、for4、for range5、break6、continue7、goto8、return 1、if 条件表达式左右的()是建议省略的if后面一定要有空格&#xff0c;和条件表达式分隔开来{ }一定不能省略if后面可以并列的加入变量的定义 if count : 20;count < 30 {fmt.Println(&quo…

基于springboot实现课程作业管理系统项目【项目源码+论文说明】

基于springboot实现课程作业管理系统演示 摘要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;课程作业管理系统当然也不能排除在外。课程作业管理系统是以实际运用为开发背景…

Transformers —— 以通俗易懂的方式解释-Part 1

公众号:Halo咯咯,欢迎关注~ 本系列主要介绍了为ChatGPT以及许多其他大型语言模型(LLM)提供支持的Transformer神经网络。我们将从基础的Transformer概念开始介绍,尽量避免使用数学和技术细节,使得更多人能够理解这一强大的技术。 Transformers —— 以通俗易懂的方式解释…

数据结构——lesson11排序之快速排序

&#x1f49e;&#x1f49e; 前言 hello hello~ &#xff0c;这里是大耳朵土土垚~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#x…

缓存雪崩问题及解决思路

实战篇Redis 2.7 缓存雪崩问题及解决思路 缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机&#xff0c;导致大量请求到达数据库&#xff0c;带来巨大压力。 解决方案&#xff1a; 给不同的Key的TTL添加随机值利用Redis集群提高服务的可用性给缓存业务添加降…

如何制作透明文件夹?

哇&#xff01;是不是很羡慕&#xff1f; 保姆级教程来啦&#xff01; 我们先新建一个文件夹 这么辛苦写文章&#xff0c;可以给我点个关注么~

好用的AI智能便签是哪款?桌面便签哪款比较智能

随着科技的日新月异&#xff0c;我们的生活与工作中涌现出众多便捷的软件工具&#xff0c;它们不仅提升了我们的生活质量&#xff0c;更在工作效率上给予了极大的助力。其中&#xff0c;便签软件以其简单实用的特性&#xff0c;成为了许多人日常不可或缺的好帮手。而在众多便签…

量化交易入门(二十八)什么是布林带,量化中怎么使用

什么叫布林带 布林带&#xff08;Bollinger Bands&#xff09;是一种常用的技术分析指标&#xff0c;由约翰布林&#xff08;John Bollinger&#xff09;于20世纪80年代开发。它由三条线组成&#xff1a;中轨&#xff08;通常为20日移动平均线&#xff09;、上轨&#xff08;中…

【IC前端虚拟项目】write_path子模块DS与RTL编码

【IC前端虚拟项目】数据搬运指令处理模块前端实现虚拟项目说明-CSDN博客 read_path的代码完成之后,就可以开始整个项目里复杂度最高、bug最多、时序收敛最为困难的模块——write_path的开发了!我自己写过两次这个虚拟项目,每次都是在这里耗时最久,所以大家也可以挑战一下自…

Java虚拟机(JVM)知识点总结

一. Java内存区域 1. JVM的内存区域划分&#xff0c;以及各部分的作用 可分为运行时数据区域和本地内存&#xff0c;按照线程私有和线程共享分类&#xff1a; 线程私有&#xff1a;程序计数器、虚拟机栈、本地方法栈。 线程共享&#xff1a;堆、方法区、直接内存。 JDK1.7…

[Python GUI PyQt] PyQt5快速入门

PyQt5快速入门 PyQt5的快速入门0. 写在前面1. 思维导图2. 第一个PyQt5的应用程序3. PyQt5的常用基本控件和布局3.1 PyQt5的常用基本控件3.1.1 按钮控件 QPushButton3.1.2 文本标签控件 QLabel3.1.3 单行输入框控件 QLineEdit3.1.4 A Quick Widgets Demo 3.2 PyQt5的常用基本控件…