0202矩阵的运算-矩阵及其运算-线性代数

文章目录

    • 一、矩阵的加法
    • 二、数与矩阵相乘
    • 三、矩阵与矩阵相乘
    • 四、矩阵的转置
    • 五、方阵的行列式
    • 结语

一、矩阵的加法

定义2 设有两个 m × n m\times n m×n橘子 A = ( a i j ) 和 B = ( b i j ) A=(a_{ij})和B=(b_{ij}) A=(aij)B=(bij),那么矩阵A与B的和记为A+B,规定为
A + B = ( a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋮ ⋮ ⋮ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ) A+B=\begin{pmatrix} a_{11}+b_{11}&a_{12}+b_{12}&\cdots&a_{1n}+b_{1n}\\ a_{21}+b_{21}&a_{22}+b_{22}&\cdots&a_{2n}+b_{2n}\\ \vdots&\vdots&&\vdots\\ a_{m1}+b_{m1}&a_{m2}+b_{m2}&\cdots&a_{mn}+b_{mn}\\ \end{pmatrix} A+B= a11+b11a21+b21am1+bm1a12+b12a22+b22am2+bm2a1n+b1na2n+b2namn+bmn

**tips:**只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。

矩阵加法满足下列运算规律(设A,B,C都是 m × n m\times n m×n矩阵):

  • A + B = B + A A+B=B+A A+B=B+A
  • ( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C)

设矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),记

− A = ( − a i j ) -A=(-a_{ij}) A=(aij)

-A称为矩阵A的负矩阵,显示有

A + ( − A ) = O A+(-A)=O A+(A)=O

矩阵的减法为

A − B = A + ( − B ) A-B=A+(-B) AB=A+(B)

二、数与矩阵相乘

定义3 数 λ \lambda λ与矩阵A的乘积记作 λ A 或 A λ \lambda A或A\lambda λAAλ,规定为
λ A = A λ = ( λ a 11 λ a 12 ⋯ λ a 1 n λ a 21 λ a 22 ⋯ λ a 2 n ⋮ ⋮ ⋮ λ a m 1 λ a m 2 ⋯ λ a m n ) \lambda A=A\lambda=\begin{pmatrix} \lambda a_{11}&\lambda a_{12}&\cdots&\lambda a_{1n}\\ \lambda a_{21}&\lambda a_{22}&\cdots&\lambda a_{2n}\\ \vdots&\vdots&&\vdots\\ \lambda a_{m1}&\lambda a_{m2}&\cdots&\lambda a_{mn}\\ \end{pmatrix} λA=Aλ= λa11λa21λam1λa12λa22λam2λa1nλa2nλamn

数乘矩阵满足下列运算规律(设A、B为 m × n m\times n m×n矩阵, λ 、 μ \lambda、\mu λμ为数):

  • ( λ μ ) A = λ ( μ A ) (\lambda\mu)A=\lambda(\mu A) (λμ)A=λ(μA)
  • ( λ + μ ) A = λ A + μ A (\lambda+\mu)A=\lambda A+\mu A (λ+μ)A=λA+μA
  • λ ( A + B ) = λ A + λ B \lambda(A+B)=\lambda A+\lambda B λ(A+B)=λA+λB

矩阵加法和数乘矩阵统称为矩阵的线性运算。

三、矩阵与矩阵相乘

定义4 设 A = ( a i j ) 是一个 m × s A=(a_{ij})是一个m\times s A=(aij)是一个m×s的矩阵, B = ( b i j ) 是一个 s × n B=(b_{ij})是一个s\times n B=(bij)是一个s×n的矩阵,那么规定矩阵A与矩阵B的乘积是一个 m × n m\times n m×n矩阵 C = ( c i j ) C=(c_{ij}) C=(cij),其中

c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i s b s j = ∑ k = 1 n a i k b j k , ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{is}b_{sj}=\sum_{k=1}^na_{ik}b_{jk},(i=1,2,\cdots,m;j=1,2,\cdots,n) cij=ai1b1j+ai2b2j++aisbsj=k=1naikbjk,(i=1,2,,m;j=1,2,,n)

并把此乘积记作

C = A B C=AB C=AB

说明:

  • 乘积矩阵 A B = C 的 ( i , j ) 元 c i j AB=C的(i,j)元c_{ij} AB=C(i,j)cij就是A的第 i i i行和B的第 j j j列的乘积。
  • 只有当第一个矩阵的(左矩阵)的列数等于第二个矩阵的(右矩阵)的行数时,两个矩阵才能相乘。

例5 求矩阵
A = ( 4 − 1 2 1 1 1 0 3 0 3 1 4 ) 与 B = ( 1 2 0 1 3 0 − 1 2 ) A=\begin{pmatrix} 4&-1&2&1\\ 1&1&0&3\\ 0&3&1&4\\ \end{pmatrix} 与B=\begin{pmatrix} 1&2\\ 0&1\\ 3&0\\ -1&2\\ \end{pmatrix} A= 410113201134 B= 10312102
的乘积
C = A B = ( 4 + 0 + 6 − 1 8 − 1 + 0 + 2 1 + 0 + 0 − 3 2 + 1 + 0 + 6 0 + 0 + 3 − 4 0 + 3 + 0 + 8 ) = C = A B = ( 9 9 − 2 9 − 1 11 ) C=AB=\begin{pmatrix} 4+0+6-1&8-1+0+2\\ 1+0+0-3&2+1+0+6\\ 0+0+3-4&0+3+0+8\\ \end{pmatrix}\\ =C=AB=\begin{pmatrix} 9&9\\ -2&9\\ -1&11\\ \end{pmatrix} C=AB= 4+0+611+0+030+0+3481+0+22+1+0+60+3+0+8 =C=AB= 9219911
例6 求矩阵
A = ( − 2 4 1 − 2 ) 与 B = ( 2 4 − 3 − 6 ) A=\begin{pmatrix} -2&4\\ 1&-2 \end{pmatrix} 与B=\begin{pmatrix} 2&4\\ -3&-6 \end{pmatrix} A=(2142)B=(2346)
的乘积AB级BA
A B = ( − 16 − 32 8 16 ) B A = ( 0 0 0 0 ) AB=\begin{pmatrix} -16&-32\\ 8&16\\ \end{pmatrix}\\ BA=\begin{pmatrix} 0&0\\ 0&0\\ \end{pmatrix}\\ AB=(1683216)BA=(0000)
tips:

  • A B AB AB有意思,但是 B A BA BA不一定有意义;若 B A BA BA有意义,但AB与BA不一定相等。
  • 对于n阶方阵A、B,若AB=BA,则称方阵A与B可交换。
  • 若两个矩阵A、B满足 A B = O AB=O AB=O,不能得出 A = O 或 B = O A=O或B=O A=OB=O;若 A ≠ O A\not=O A=O A ( X − Y ) = O A(X-Y)=O A(XY)=O,不能得出 X = Y X=Y X=Y的结论。

矩阵的乘法虽不满足交换律,但仍满足下列结合律和分配律(假设运算都是可行的):

  • ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
  • λ ( A B ) = ( λ A ) B = A ( λ B ) \lambda(AB)=(\lambda A)B=A(\lambda B) λ(AB)=(λA)B=A(λB)
  • A ( B + C ) = A B + A C , ( B + C ) A = B A + C A A(B+C)=AB+AC,(B+C)A=BA+CA A(B+C)=AB+AC,(B+C)A=BA+CA

对于单位矩阵E,容易验证

E M A m × n = A m × n , A m × n E n = A m × n E_MA_{m\times n}=A_{m\times n},A_{m\times n}E_n=A_{m\times n} EMAm×n=Am×n,Am×nEn=Am×n

或简写EA=AE=A

矩阵
( λ λ ⋱ λ ) \begin{pmatrix} \lambda&&&\\ &\lambda&&\\ &&\ddots&\\ &&&\lambda\\ \end{pmatrix} λλλ
称为纯量阵。由 ( λ E ) A = λ A , A ( λ E ) = λ A (\lambda E)A=\lambda A,A(\lambda E)=\lambda A (λE)A=λA,A(λE)=λA,可知纯量阵 λ E 与矩阵 A \lambda E与矩阵A λE与矩阵A的乘积等于数 λ \lambda λ与A的乘积,当A位n阶方阵时,有

( λ E ) A n = λ A n = A n ( λ E ) (\lambda E)A_n=\lambda A_n=A_n(\lambda E) (λE)An=λAn=An(λE)

表名纯量阵 λ E \lambda E λE与任何同阶方阵都是可交换的。

矩阵的幂:设A是n阶方阵,定义 A 1 = A , A 2 = A 1 A 1 , ⋯ , A k + 1 = A k A 1 A^1=A,A^2=A^1A^1,\cdots,A^{k+1}=A^kA^1 A1=A,A2=A1A1,,Ak+1=AkA1

其中 k k k为正整数。

矩阵的幂满足以下运算规律

  • A K A l = A k + l , ( A k ) l = A k l A^KA^l=A^{k+l},(A^k)^l=A^{kl} AKAl=Ak+l,(Ak)l=Akl

矩阵A与B可交换时,满足下列运算规律

  • ( A B ) k = A k B k (AB)^k=A^kB^k (AB)k=AkBk
  • ( A + B ) 2 = A 2 + 2 A B + B 2 (A+B)^2=A^2+2AB+B^2 (A+B)2=A2+2AB+B2
  • ( A + B ) ( A − B ) = A 2 − B 2 (A+B)(A-B)=A^2-B^2 (A+B)(AB)=A2B2

例7 上阶例1中n元线性方程组(1)
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 1 , ⋯ ⋯ ⋯ a m x 1 + a m 2 x 2 + ⋯ + a m n x n = b 1 , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_1,\\ \cdots\cdots\cdots\\ a_{m}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_1,\\ \end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b1,⋯⋯⋯amx1+am2x2++amnxn=b1,
利用矩阵乘法可写成矩阵形式

A m × n x n × 1 = b m × 1 A_{m\times n}x_{n\times 1}=b_{m\times 1} Am×nxn×1=bm×1

其中 A = ( a i j ) A=(a_{ij}) A=(aij)为系数矩阵, x = ( x 1 x 2 ⋮ x n ) x=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix} x= x1x2xn 为未知数矩阵, b = ( b 1 b 2 ⋮ b m ) b=\begin{pmatrix}b_1\\b_2\\\vdots\\b_m\end{pmatrix} b= b1b2bm 为常数项矩阵。特别当b=O时,得到吗哥方程的n元齐次线性方程组的矩阵形式

A m × n x n × 1 = 0 m × 1 A_{m\times n}x_{n\times 1}=0_{m\times 1} Am×nxn×1=0m×1

四、矩阵的转置

定义5 把矩阵A的行换成同序列的列得到一个新的矩阵,叫做A的转置矩阵,记作 A T A^T AT.

矩阵的转置也是一种运算,满足下列运算过滤(假设运算都是可行的):

  • ( A T ) T = A (A^T)^T=A (AT)T=A
  • ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
  • ( λ A ) T = λ A T (\lambda A)^T=\lambda A^T (λA)T=λAT
  • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

例8 已知
A = ( 2 0 − 1 1 3 2 ) , B = ( 1 7 − 1 4 2 3 2 0 1 ) A=\begin{pmatrix} 2&0&-1\\ 1&3&2\\ \end{pmatrix} ,B=\begin{pmatrix} 1&7&-1\\ 4&2&3\\ 2&0&1\\ \end{pmatrix}\\ A=(210312),B= 142720131
( A B ) T (AB)^T (AB)T
A B = A = ( 0 14 − 3 17 13 10 ) ( A B ) T = ( 0 17 14 13 − 3 10 ) AB=A=\begin{pmatrix} 0&14&-3\\ 17&13&10\\ \end{pmatrix}\\ (AB)^T=\begin{pmatrix} 0&17\\ 14&13\\ -3&10\\ \end{pmatrix} AB=A=(0171413310)(AB)T= 0143171310

五、方阵的行列式

定义6 有n阶方阵A的元素所构成的行列式(各元素的位置不变),称为方程A的行列式,记作 d e t A 或者 ∣ A ∣ det A或者\vert A\vert detA或者A

有A确定 ∣ A ∣ \vert A\vert A的这个运算满足下述运算规律(设A、B位n阶方阵,$\lambda $为数:

  1. ∣ A T ∣ = ∣ A ∣ \vert A^T\vert = \vert A\vert AT=A
  2. ∣ λ A ∣ = λ n ∣ A ∣ |\lambda A\vert = \lambda^n \vert A\vert λA=λnA
  3. ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \vert AB\vert = \vert A\vert \vert B\vert AB=A∣∣B

伴随矩阵:

行列式 ∣ A ∣ \vert A\vert A的各个元素的代数余子式 A i j A_{ij} Aij所构成的如下的矩阵
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) A^*=\begin{pmatrix} A_{11}&A_{21}&\cdots&A_{n1}\\ A_{12}&A_{22}&\cdots&A_{n2}\\ \vdots&\vdots&&\vdots\\ A_{1n}&A_{2n}&\cdots&A_{nn}\\ \end{pmatrix} A= A11A12A1nA21A22A2nAn1An2Ann
称为矩阵A的伴随矩阵,简称伴随阵。

A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=\vert A\vert E AA=AA=AE

结语

❓QQ:806797785

⭐️文档笔记地址 https://github.com/gaogzhen/math

参考:

[1]同济大学数学系.工程数学.线性代数 第6版 [M].北京:高等教育出版社,2014.6.p29-39.

[2]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p9.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/779563.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SqlServer(4)经典总结大全-技巧总结-数据开发-基本函数-常识整理-经典面试题

六、技巧 1、11,12的使用,在SQL语句组合时用的较多 “where 11” 是表示选择全部 “where 12”全部不选, 如: if strWhere !‘’ begin set strSQL ‘select count(*) as Total from [’ tblName ] where ’ strWhere …

GEE22:基于目视解译的土地利用分类(随机森林监督分类)

采样点信息: 设置一下采样点参数: 代码: //设置研究区位置 var table ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019"); var roi table.filter(ee.Filter.eq(provinces,beijing)); Map.centerObjec…

Golang基础-4

Go语言基础 介绍 基础 数组(array) 数组声明 元素访问与修改 数组遍历 关系运算 切片创建 多维数组 介绍 本文介绍Go语言中数组(array)操作(数组声明、元素访问与修改、数组遍历、关系运算、切片创建、多维数组)等相关知识。 基础 数组 数组是具有相同数据类型的…

函数重载和引用

目录 一:函数重载 1.1函数重载的概念 1.2为什么C支持函数重载,而C语言不支持呢? 1.2.1结论 1.2.2分析 二:引用 2.1引用概念 2.2引用特性 ​编辑 2.3常引用 2.4使用场景 一:函数重载 在自然语言中&#x…

浏览器工作原理与实践--块级作用域:var缺陷以及为什么要引入let和const

在前面《07 | 变量提升:JavaScript代码是按顺序执行的吗?》这篇文章中,我们已经讲解了JavaScript中变量提升的相关内容,正是由于JavaScript存在变量提升这种特性,从而导致了很多与直觉不符的代码,这也是Jav…

数字化坚鹏:小熊电器面向数字化转型的大数据顶层设计实践培训

小熊电器面向数字化转型的大数据顶层设计实践培训圆满结束 ——努力打造“数据技术营销”三轮驱动的数字化领先企业 小熊电器股份有限公司由李一峰创立于2006年,是一家专业从事创意小家电研发、设计、生产和销售的实业型企业。2019年8月23日正式在深交所挂牌上市。…

搜索模糊匹配% _ 等特殊字符转义工具

mysql 和达梦数据库不同的解决方式: mysql 数据库 解决搜索框传入%等特殊字符查询全部数据的问题: /***author liuxingying*description 搜索转义工具类*since 2023/11/30*/ public class EscapeUtil {/*** sql的模糊查询时特殊字符转义(条件查询%或者_…

Intel Arc显卡安装Stable Diffusion

StableDiffusion是一种基于深度学习的文本到图像生成模型,于2022年发布。它主要用于根据文本描述生成详细图像,也可应用于其他任务,如内补绘制、外补绘制和在提示词指导下生成图像翻译。通过给定文本提示词,该模型会输出一张匹配提…

gitee多用户配置

一、引言 在工作的时候我们有时候会自己创建项目Demo来实现一些功能,但是又不想把自己的Demo代码放到公司的仓库代码平台(gitee)中管理,于是就是想自己放到自己的Gitee中管理,于是就需要配置Git多用户。 本文将配置分别…

javascript解决接口请求过慢新的接口返回数据被旧的接口覆盖问题

今天请求接口的时候发现最新一次接口数据被上一次接口请求数据覆盖,原因是上一次接口用了2~3s,本次接口请求用了10ms, 导致新的数据被旧数据覆盖, 为了避免上一次请求的代码执行在本次请求之后才响应结束,使用Promise来管理异步操作。在每次请求开始时创…

串行流(Sequential Stream)和并行流(Parallel Stream)区别

在 Java 中,串行流和并行流是针对流操作的两种不同处理方式: 串行流(Sequential Stream): 串行流是流元素按顺序依次处理的流。在串行流中,操作是单线程执行的,每个元素依次经过流水线上的各个…

力扣46---全排列(递归)

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]示例 2: 输入:nums …

vue2之各种插槽

插槽也是用于vue间创建的数据的一种方式&#xff0c;一般都是传递html元素。比如可以用于定义一个带样式的title等 默认插槽&#xff1a;没有name的插槽 ----父组件------ <template><div><TypeCom><!-- 如果这里的注释放开&#xff0c;那么子组件中默认…

【Go】五、流程控制

文章目录 1、if2、switch3、for4、for range5、break6、continue7、goto8、return 1、if 条件表达式左右的()是建议省略的if后面一定要有空格&#xff0c;和条件表达式分隔开来{ }一定不能省略if后面可以并列的加入变量的定义 if count : 20;count < 30 {fmt.Println(&quo…

基于springboot实现课程作业管理系统项目【项目源码+论文说明】

基于springboot实现课程作业管理系统演示 摘要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;课程作业管理系统当然也不能排除在外。课程作业管理系统是以实际运用为开发背景…

Transformers —— 以通俗易懂的方式解释-Part 1

公众号:Halo咯咯,欢迎关注~ 本系列主要介绍了为ChatGPT以及许多其他大型语言模型(LLM)提供支持的Transformer神经网络。我们将从基础的Transformer概念开始介绍,尽量避免使用数学和技术细节,使得更多人能够理解这一强大的技术。 Transformers —— 以通俗易懂的方式解释…

数据结构——lesson11排序之快速排序

&#x1f49e;&#x1f49e; 前言 hello hello~ &#xff0c;这里是大耳朵土土垚~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#x…

缓存雪崩问题及解决思路

实战篇Redis 2.7 缓存雪崩问题及解决思路 缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机&#xff0c;导致大量请求到达数据库&#xff0c;带来巨大压力。 解决方案&#xff1a; 给不同的Key的TTL添加随机值利用Redis集群提高服务的可用性给缓存业务添加降…

如何制作透明文件夹?

哇&#xff01;是不是很羡慕&#xff1f; 保姆级教程来啦&#xff01; 我们先新建一个文件夹 这么辛苦写文章&#xff0c;可以给我点个关注么~

好用的AI智能便签是哪款?桌面便签哪款比较智能

随着科技的日新月异&#xff0c;我们的生活与工作中涌现出众多便捷的软件工具&#xff0c;它们不仅提升了我们的生活质量&#xff0c;更在工作效率上给予了极大的助力。其中&#xff0c;便签软件以其简单实用的特性&#xff0c;成为了许多人日常不可或缺的好帮手。而在众多便签…