【408直通车】(考研数一、二、三合集)高等数学公式全覆盖(上)

数学集合定义总结:

  • 自然数集( N \mathbb{N} N:包括0、1、2、3等正整数,即 { 0 , 1 , 2 , … } \{0, 1, 2, \ldots\} {0,1,2,}

  • 整数集( Z \mathbb{Z} Z:包括负整数、0和正整数,即 { … , − 1 , 0 , 1 , … } \{\ldots, -1, 0, 1, \ldots\} {,1,0,1,}

  • 非零自然数集( N ∗ \mathbb{N^*} N N + \mathbb{N+} N+:也称为正整数集,包括1、2、3等正整数,即 { 1 , 2 , 3 , … } \{1, 2, 3, \ldots\} {1,2,3,}

  • 有理数集( Q \mathbb{Q} Q:包括所有可以表示为两个整数之比的数,形如 a b \frac{a}{b} ba,其中 a a a b b b 是整数且 b ≠ 0 b \neq 0 b=0

  • 无理数集( R ∖ Q \mathbb{R} \setminus \mathbb{Q} RQ:包括不能被有理数表示的实数,如 2 \sqrt{2} 2 π \pi π 等。

  • 实数集( R \mathbb{R} R:包括所有有理数和无理数。

  • 复数集( C \mathbb{C} C:包括实部和虚部均为实数的数,形如 a + b i a + bi a+bi,其中 a a a b b b 是实数,且 i i i 是虚数单位。

  • 函数集合( N N N^N NN:包含所有从自然数到自然数的可能函数,表示为 { f : N → N } \{f: \mathbb{N} \rightarrow \mathbb{N}\} {f:NN}

代数
  1. x 3 − 1 = ( x − 1 ) ( x 2 + x + 1 ) x^3 - 1 = (x - 1)(x^2 + x + 1) x31=(x1)(x2+x+1)
  2. 1 2 + 2 2 + 3 2 + ⋯ + n 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) \frac{1}{2} + 2^2 + 3^2 + \cdots + n^2 = \frac{1}{6}n(n + 1)(2n + 1) 21+22+32++n2=61n(n+1)(2n+1)
  3. a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2) a3±b3=(a±b)(a2ab+b2)
  4. a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + a n − 3 b 2 + ⋯ + a b n − 2 + b n − 1 ) a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \cdots + ab^{n-2} + b^{n-1}) anbn=(ab)(an1+an2b+an3b2++abn2+bn1)
排列组合
  1. 排列公式

    • A m n = n ( n − 1 ) ⋯ ( n − m + 1 ) = n ! ( n − m ) ! A_m^n = n(n - 1)\cdots(n - m + 1) = \frac{n!}{(n - m)!} Amn=n(n1)(nm+1)=(nm)!n!
      (其中 n , m ∈ N ∗ n, m \in \mathbb{N^*} n,mN m ≤ n m \leq n mn)
  2. 组合公式

    • C m n = ( n m ) = A m n m ! = n ( n − 1 ) ⋯ ( n − m + 1 ) m ! = n ! m ! ( n − m ) ! C_m^n = \binom{n}{m} = \frac{A_m^n}{m!} = \frac{n(n - 1)\cdots(n - m + 1)}{m!} = \frac{n!}{m!(n - m)!} Cmn=(mn)=m!Amn=m!n(n1)(nm+1)=m!(nm)!n!
      (其中 n ∈ N N , m ∈ N n \in \mathbb{N^N}, m \in \mathbb{N} nNN,mN m ≤ n m \leq n mn)
  3. 组合公式性质

    • C m n + C m − 1 n = C m n + 1 C_m^n + C_{m-1}^n = C_{m}^{n+1} Cmn+Cm1n=Cmn+1
等差等比求和
  • 前 n 项和公式(等差数列)

    • S n = n ( a 1 + a n ) 2 = n a 1 + n ( n − 1 ) 2 d = d 2 n 2 + ( a 1 − 1 2 d ) n S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n - 1)}{2}d=\frac{d}{2}n^2 + (a_1 - \frac{1}{2}d)n Sn=2n(a1+an)=na1+2n(n1)d=2dn2+(a121d)n
  • 前 n 项和公式(等比数列)

    • S n = { a 1 ( 1 − q n ) 1 − q , q ≠ 1 n a 1 , q = 1 S_n = \begin{cases} \frac{a_1(1-q^n)}{1-q}, & q \neq 1 \\ na_1, & q = 1 \end{cases} Sn={1qa1(1qn),na1,q=1q=1
定积分

∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int_a^b f(x)dx = \lim\limits_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i)\Delta x_i abf(x)dx=λ0limi=1nf(ξi)Δxi

三角函数

和角与差角公式
  1. sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β \sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta sin(α±β)=sinαcosβ±cosαsinβ
  2. cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β \cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta cos(α±β)=cosαcosβsinαsinβ
  3. tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β \tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta} tan(α±β)=1tanαtanβtanα±tanβ
  4. sin ⁡ ( α + β ) sin ⁡ ( α − β ) = sin ⁡ 2 α − sin ⁡ 2 β \sin(\alpha + \beta) \sin(\alpha - \beta) = \sin^2 \alpha - \sin^2 \beta sin(α+β)sin(αβ)=sin2αsin2β (平方正弦公式)
  5. cos ⁡ ( α + β ) cos ⁡ ( α − β ) = cos ⁡ 2 α − sin ⁡ 2 β \cos(\alpha + \beta) \cos(\alpha - \beta) = \cos^2 \alpha - \sin^2 \beta cos(α+β)cos(αβ)=cos2αsin2β
  6. a sin ⁡ α + b cos ⁡ α = a 2 + b 2 sin ⁡ ( α + ϕ ) a \sin \alpha + b \cos \alpha = \sqrt{a^2 + b^2} \sin(\alpha + \phi) asinα+bcosα=a2+b2 sin(α+ϕ) (辅助角 ϕ \phi ϕ所在象限由点 ( a , b ) (a, b) (a,b)的象限决定, tan ⁡ ϕ = b a \tan \phi = \frac{b}{a} tanϕ=ab)
倍角公式
  • sin ⁡ ( 2 α ) = 2 sin ⁡ ( α ) cos ⁡ ( α ) \sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) sin(2α)=2sin(α)cos(α)
  • cos ⁡ ( 2 α ) = 2 cos ⁡ 2 ( α ) − 1 = 1 − 2 sin ⁡ 2 ( α ) = cos ⁡ 2 ( α ) − sin ⁡ 2 ( α ) \cos(2\alpha) = 2\cos^2(\alpha) - 1 = 1 - 2\sin^2(\alpha) = \cos^2(\alpha) - \sin^2(\alpha) cos(2α)=2cos2(α)1=12sin2(α)=cos2(α)sin2(α)
  • tan ⁡ ( 2 α ) = 2 tan ⁡ ( α ) 1 − tan ⁡ 2 ( α ) \tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)} tan(2α)=1tan2(α)2tan(α)
半角公式
  • sin ⁡ ( α 2 ) = ± 1 − cos ⁡ α 2 \sin\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{2}} sin(2α)=±21cosα
  • cos ⁡ ( α 2 ) = ± 1 + cos ⁡ α 2 \cos\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + \cos \alpha}{2}} cos(2α)=±21+cosα
  • tan ⁡ ( α 2 ) = ± 1 − cos ⁡ α 1 + cos ⁡ α = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α \tan\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha} tan(2α)=±1+cosα1cosα =sinα1cosα=1+cosαsinα
和差化积与积化和差

口诀:
正加正,正在前,余加余,余并肩,
正减正,余在前,余减余,负正弦.

1. 和差化积:

  • sin ⁡ α + sin ⁡ β = 2 sin ⁡ ( α + β 2 ) cos ⁡ ( α − β 2 ) \sin\alpha + \sin\beta = 2\sin\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) sinα+sinβ=2sin(2α+β)cos(2αβ)
  • sin ⁡ α − sin ⁡ β = 2 cos ⁡ ( α + β 2 ) sin ⁡ ( α − β 2 ) \sin\alpha - \sin\beta = 2\cos\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right) sinαsinβ=2cos(2α+β)sin(2αβ)
  • cos ⁡ α + cos ⁡ β = 2 cos ⁡ ( α + β 2 ) cos ⁡ ( α − β 2 ) \cos\alpha + \cos\beta = 2\cos\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha - \beta}{2}\right) cosα+cosβ=2cos(2α+β)cos(2αβ)
  • cos ⁡ α − cos ⁡ β = − 2 sin ⁡ ( α + β 2 ) sin ⁡ ( α − β 2 ) \cos\alpha - \cos\beta = -2\sin\left(\frac{\alpha + \beta}{2}\right)\sin\left(\frac{\alpha - \beta}{2}\right) cosαcosβ=2sin(2α+β)sin(2αβ)
  • tan ⁡ A + tan ⁡ B = sin ⁡ ( A + B ) cos ⁡ A cos ⁡ B = tan ⁡ ( A + B ) ( 1 − tan ⁡ A tan ⁡ B ) \tan A + \tan B = \frac{\sin(A+B)}{\cos A \cos B} = \tan(A+B)(1-\tan A \tan B) tanA+tanB=cosAcosBsin(A+B)=tan(A+B)(1tanAtanB)
  • tan ⁡ A − tan ⁡ B = sin ⁡ ( A − B ) cos ⁡ A cos ⁡ B = tan ⁡ ( A − B ) ( 1 + tan ⁡ A tan ⁡ B ) \tan A - \tan B = \frac{\sin(A-B)}{\cos A \cos B} = \tan(A-B)(1+\tan A \tan B) tanAtanB=cosAcosBsin(AB)=tan(AB)(1+tanAtanB)

2. 积化和差公式:

  1. cos ⁡ a sin ⁡ β = 1 2 [ sin ⁡ ( a + β ) − sin ⁡ ( a − β ) ] \cos a \sin \beta = \frac{1}{2} [\sin(a + \beta) - \sin(a - \beta)] cosasinβ=21[sin(a+β)sin(aβ)]
  2. sin ⁡ a cos ⁡ β = 1 2 [ sin ⁡ ( a + β ) + sin ⁡ ( a − β ) ] \sin a \cos \beta = \frac{1}{2} [\sin (a + \beta) + \sin(a - \beta)] sinacosβ=21[sin(a+β)+sin(aβ)]
  3. cos ⁡ a cos ⁡ β = 1 2 [ cos ⁡ ( a + β ) + cos ⁡ ( a − β ) ] \cos a \cos \beta = \frac{1}{2} [\cos(a + \beta) + \cos(a - \beta)] cosacosβ=21[cos(a+β)+cos(aβ)]
  4. sin ⁡ a sin ⁡ β = − 1 2 [ cos ⁡ ( a + β ) − cos ⁡ ( a − β ) ] \sin a \sin \beta = -\frac{1}{2} [\cos(a + \beta) - \cos(a - \beta)] sinasinβ=21[cos(a+β)cos(aβ)]
三角和
  • sin ⁡ ( α + β + γ ) = sin ⁡ α ⋅ cos ⁡ β ⋅ cos ⁡ γ + cos ⁡ α ⋅ sin ⁡ β ⋅ cos ⁡ γ + cos ⁡ α ⋅ cos ⁡ β ⋅ sin ⁡ γ − sin ⁡ α ⋅ sin ⁡ β ⋅ sin ⁡ γ \sin(\alpha + \beta + \gamma) = \sin\alpha \cdot \cos\beta \cdot \cos\gamma + \cos\alpha \cdot \sin\beta \cdot \cos\gamma + \cos\alpha \cdot \cos\beta \cdot \sin\gamma - \sin\alpha \cdot \sin\beta \cdot \sin\gamma sin(α+β+γ)=sinαcosβcosγ+cosαsinβcosγ+cosαcosβsinγsinαsinβsinγ
  • cos ⁡ ( α + β + γ ) = cos ⁡ α ⋅ cos ⁡ β ⋅ cos ⁡ γ − cos ⁡ α ⋅ sin ⁡ β ⋅ sin ⁡ γ − sin ⁡ α ⋅ cos ⁡ β ⋅ sin ⁡ γ − sin ⁡ α ⋅ sin ⁡ β ⋅ cos ⁡ γ \cos(\alpha + \beta + \gamma) = \cos\alpha \cdot \cos\beta \cdot \cos\gamma - \cos\alpha \cdot \sin\beta \cdot \sin\gamma - \sin\alpha \cdot \cos\beta \cdot \sin\gamma - \sin\alpha \cdot \sin\beta \cdot \cos\gamma cos(α+β+γ)=cosαcosβcosγcosαsinβsinγsinαcosβsinγsinαsinβcosγ
  • tan ⁡ ( α + β + γ ) = tan ⁡ α + tan ⁡ β + tan ⁡ γ − tan ⁡ α ⋅ tan ⁡ β ⋅ tan ⁡ γ 1 − tan ⁡ α ⋅ tan ⁡ β − tan ⁡ β ⋅ tan ⁡ γ − tan ⁡ γ ⋅ tan ⁡ α \tan(\alpha + \beta + \gamma) = \dfrac{\tan\alpha + \tan\beta + \tan\gamma - \tan\alpha \cdot \tan\beta \cdot \tan\gamma}{1 - \tan\alpha \cdot \tan\beta - \tan\beta \cdot \tan\gamma - \tan\gamma \cdot \tan\alpha} tan(α+β+γ)=1tanαtanβtanβtanγtanγtanαtanα+tanβ+tanγtanαtanβtanγ
诱导公式:
  • sin ⁡ ( − α ) = − sin ⁡ α \sin(-\alpha) = -\sin\alpha sin(α)=sinα
  • cos ⁡ ( − α ) = cos ⁡ α \cos(-\alpha) = \cos\alpha cos(α)=cosα
  • tan ⁡ ( − α ) = − tan ⁡ α \tan(-\alpha) = -\tan\alpha tan(α)=tanα
  • sin ⁡ ( π 2 − α ) = cos ⁡ α \sin\left(\frac{\pi}{2}-\alpha\right) = \cos\alpha sin(2πα)=cosα
  • cos ⁡ ( π 2 − α ) = sin ⁡ α \cos\left(\frac{\pi}{2}-\alpha\right) = \sin\alpha cos(2πα)=sinα
  • sin ⁡ ( π 2 + α ) = cos ⁡ α \sin\left(\frac{\pi}{2}+\alpha\right) = \cos\alpha sin(2π+α)=cosα
  • cos ⁡ ( π 2 + α ) = − sin ⁡ α \cos\left(\frac{\pi}{2}+\alpha\right) = -\sin\alpha cos(2π+α)=sinα
  • sin ⁡ ( π − α ) = sin ⁡ α \sin(\pi-\alpha) = \sin\alpha sin(πα)=sinα
  • cos ⁡ ( π − α ) = − cos ⁡ α \cos(\pi-\alpha) = -\cos\alpha cos(πα)=cosα
  • sin ⁡ ( π + α ) = − sin ⁡ α \sin(\pi+\alpha) = -\sin\alpha sin(π+α)=sinα
  • cos ⁡ ( π + α ) = − cos ⁡ α \cos(\pi+\alpha) = -\cos\alpha cos(π+α)=cosα

不等式:

  1. a + b ≥ 2 a b , a > 0 , b > 0 a + b \geq 2\sqrt{ab}, a > 0, b > 0 a+b2ab ,a>0,b>0
  2. a b ≤ ( a + b ) 2 4 ab \leq \frac{(a+b)^2}{4} ab4(a+b)2
  3. − ∣ a ∣ ≤ a ≤ ∣ a ∣ -|a| \leq a \leq |a| aaa
  4. ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a| - |b|| \leq |a \pm b| \leq |a| + |b| ∣∣ab∣∣a±ba+b
  5. a − 1 < [ a ] ≤ a , [ a ] a - 1 < [a] \leq a, [a] a1<[a]a,[a] 表示对 a a a取整,即不超过 a a a的最大整数
  6. 对于 x > 0 , x < sin ⁡ x x > 0, x < \sin x x>0,x<sinx;对于 x < 0 , x > sin ⁡ x x < 0, x > \sin x x<0,x>sinx
  7. arctan ⁡ x < sin ⁡ x < x < arcsin ⁡ x < tan ⁡ x \arctan x < \sin x < x < \arcsin x < \tan x arctanx<sinx<x<arcsinx<tanx,其中 0 < x < π 2 0 < x < \frac{\pi}{2} 0<x<2π
  8. 对于 x > 0 , x > ln ⁡ ( 1 + x ) x > 0, x > \ln(1 + x) x>0,x>ln(1+x)
  9. e x − 1 ≥ x , x ∈ R e^x - 1 \geq x, x \in \mathbb{R} ex1x,xR

函数关系和微分公式:

  1. [ sin ⁡ ( a x + b ) ] ( n ) = a n sin ⁡ ( a x + b + n π 2 ) [ \sin(ax + b) ]^{(n)} = a^n \sin(ax + b+ \frac{n\pi}{2}) [sin(ax+b)](n)=ansin(ax+b+2)

  2. [ cos ⁡ ( a x + b ) ] ( n ) = a n cos ⁡ ( a x + b + n π 2 ) [ \cos(ax + b) ]^{(n)} = a^n \cos(ax + b+\frac{n\pi}{2}) [cos(ax+b)](n)=ancos(ax+b+2)

  3. [ ln ⁡ ( a x + b ) ] ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! a n ( a x + b ) n [ \ln(ax + b) ]^{(n)} = \frac{(-1)^{n-1}(n-1)!a^n}{(ax+b)^n} [ln(ax+b)](n)=(ax+b)n(1)n1(n1)!an

  4. [ ( a x + b ) a ] ( n ) = { α ( α − 1 ) ⋯ ( α − n + 1 ) ( a x + b ) a − n a n , n < α n ! , n = α 0 , n > α [ (ax + b)^{a} ](n) = \begin{cases} \alpha(\alpha - 1) \cdots (\alpha - n + 1)(ax + b)^{a-n} a^n, & n < \alpha \\ n! , & n = \alpha \\ 0 , & n > \alpha \end{cases} [(ax+b)a](n)= α(α1)(αn+1)(ax+b)anan,n!,0,n<αn=αn>α

  5. Gamma 函数:

    • Γ ( z ) = ∫ 0 ∞ e − t t z − 1 d t \Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt Γ(z)=0ettz1dt
    • Γ ( z + 1 ) = z Γ ( z ) \Gamma(z + 1) = z\Gamma(z) Γ(z+1)=zΓ(z)
    • Γ ( 1 2 ) = π \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} Γ(21)=π
  6. 微分公式:

    • ( c ) ′ = 0 (c)' = 0 (c)=0

    • y = x α y = x^{\alpha} y=xα ( α \alpha α 为实数), y ′ = α x α − 1 y' = \alpha x^{\alpha-1} y=αxα1

    • ( a x ) ′ = a x ln ⁡ a (a^x)' = a^x \ln a (ax)=axlna, ( e x ) ′ = e x ( log ⁡ a x ) ′ = 1 x ln ⁡ a (e^x)' = e^x (\log_a x)' = \frac{1}{x \ln a} (ex)=ex(logax)=xlna1

    • ( ln ⁡ ∣ x ∣ ) ′ = 1 x (\ln |x|)' = \frac{1}{x} (lnx)=x1,

    • ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)' = \cos x (sinx)=cosx, ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)' = -\sin x (cosx)=sinx

    • ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)' = \sec^2 x (tanx)=sec2x, ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)' = -\csc^2 x (cotx)=csc2x

    • ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)' = \sec x \tan x (secx)=secxtanx, ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)' = -\csc x \cot x (cscx)=cscxcotx

    • ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)' = \frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1, ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)' = -\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1

    • ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)' = \frac{1}{1+x^2} (arctanx)=1+x21, ( arccot  x ) ′ = − 1 1 + x 2 (\text{arccot } x)' = -\frac{1}{1+x^2} (arccot x)=1+x21

    • ( u v ) ( n ) = ∑ λ = 0 n C n k u ( k ) v ( n − k ) (uv)^{(n)} = \sum_{\lambda=0}^{n} C_{n}^{k} u^{(k)} v^{(n-k)} (uv)(n)=λ=0nCnku(k)v(nk)

    • ( a x ) ( n ) = a x ln ⁡ n a (a^x)^{(n)} = a^x \ln^n a (ax)(n)=axlnna ( a > 0 a > 0 a>0)

    • ( e x ) ( n ) = e x (e^x)^{(n)} = e^x (ex)(n)=ex

    • ( sin ⁡ k x ) ( n ) = k n sin ⁡ ( k x + n ⋅ π 2 ) (\sin kx)^{(n)} = k^n \sin\left(kx + n\cdot\frac{\pi}{2}\right) (sinkx)(n)=knsin(kx+n2π)

    • ( cos ⁡ k x ) ( n ) = k n cos ⁡ ( k x + n ⋅ π 2 ) (\cos kx)^{(n)} = k^n \cos\left(kx + n\cdot \frac{\pi}{2}\right) (coskx)(n)=kncos(kx+n2π)

    • ( x m ) ( n ) = m ( m − 1 ) ⋯ ( m − n + 1 ) x m − n (x^m)^{(n)} = m(m-1) \cdots (m-n+1) x^{m-n} (xm)(n)=m(m1)(mn+1)xmn

    • ( ln ⁡ x ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! x n (\ln x)^{(n)} = (-1)^{n-1} \frac{(n-1)! }{x^n} (lnx)(n)=(1)n1xn(n1)!

    • ( 1 1 + x ) ( n ) = ( − 1 ) n ⋅ n ! ⋅ ( x + 1 ) − ( n + 1 ) \left(\frac{1}{1+x}\right)^{(n)} = (-1)^n \cdot n! \cdot (x+1)^{-(n+1)} (1+x1)(n)=(1)nn!(x+1)(n+1)

    • ( 1 a x + b ) ( n ) = ( − 1 ) n ⋅ n ! ⋅ ( a x + b ) − ( n + 1 ) ⋅ a n \left(\frac{1}{ax+b}\right)^{(n)} = (-1)^n \cdot n! \cdot(ax + b)^{-(n+1)} \cdot a^n (ax+b1)(n)=(1)nn!(ax+b)(n+1)an

    • ln ⁡ ′ ( x + 1 + x 2 ) = 1 1 + x 2 \ln'(x+\sqrt{1 + x^2}) = \frac{1}{\sqrt{1+x^2}} ln(x+1+x2 )=1+x2 1

    • ln ⁡ ′ ( sec ⁡ x + tan ⁡ x ) = 1 cos ⁡ x \ln'(\sec x + \tan x) = \frac{1}{\cos x} ln(secx+tanx)=cosx1

积分公式:

  1. ∫ x k d x = 1 k + 1 x k + 1 + C ( k ≠ − 1 ) \int x^k \, dx = \frac{1}{k+1}x^{k+1} + C\quad (k \neq -1) xkdx=k+11xk+1+C(k=1)
  2. ∫ 1 x 2 d x = − 1 x + C \int \frac{1}{x^2} \, dx = -\frac{1}{x} + C x21dx=x1+C
  3. ∫ 1 x d x = 2 x + C \int \frac{1}{\sqrt{x}} \, dx = 2\sqrt{x} + C x 1dx=2x +C
  4. ∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x} \, dx = \ln |x| + C x1dx=lnx+C
  5. ∫ a x d x = a x ln ⁡ a + C ( a > 0 , a ≠ 1 ) \int a^x \, dx = \frac{a^x}{\ln a} + C \quad (a > 0, a \neq 1) axdx=lnaax+C(a>0,a=1)
  6. ∫ e x d x = e x + C \int e^x \, dx = e^x + C exdx=ex+C
  • 三角

    • ∫ cos ⁡ x d x = sin ⁡ x + C \int \cos x \, dx = \sin x + C cosxdx=sinx+C

    • ∫ sin ⁡ x d x = − cos ⁡ x + C \int \sin x \, dx = -\cos x + C sinxdx=cosx+C

    • ∫ 1 cos ⁡ 2 x d x = ∫ sec ⁡ 2 x d x = tan ⁡ x + C \int \frac{1}{\cos^2 x} \, dx = \int \sec^2 x \, dx = \tan x + C cos2x1dx=sec2xdx=tanx+C

    • ∫ 1 sin ⁡ 2 x d x = ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int \frac{1}{\sin^2 x} \, dx = \int \csc^2 x \, dx = -\cot x + C sin2x1dx=csc2xdx=cotx+C

    • ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int \sec x \tan x \, dx = \sec x + C secxtanxdx=secx+C

    • ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C \int \csc x \cot x \, dx = -\csc x + C cscxcotxdx=cscx+C

  • arc

    • ∫ d x a 2 + x 2 = 1 a arctan ⁡ ( x a ) + C \int \frac{dx}{a^2+x^2} = \frac{1}{a}\arctan\left(\frac{x}{a}\right) + C a2+x2dx=a1arctan(ax)+C
      • ∫ d x 1 + x 2 = arctan ⁡ x + C \int \frac{dx}{1+x^2} = \arctan x + C 1+x2dx=arctanx+C
    • ∫ d x a 2 − x 2 = arcsin ⁡ ( x a ) + C \int \frac{dx}{\sqrt{{a^2-x^2}}} = \arcsin\left(\frac{x}{a}\right) + C a2x2 dx=arcsin(ax)+C
    • ∫ d x 1 − x 2 = arcsin ⁡ x + C \int \frac{dx}{\sqrt{{1-x^2}}} = \arcsin x + C 1x2 dx=arcsinx+C
  • ln

    • ∫ d x x 2 − a 2 = 1 2 a ln ⁡ ∣ a − x a + x ∣ + C \int \frac{dx}{x^2-a^2} = \frac{1}{2a}\ln \left|\frac{a-x}{a+x}\right| + C x2a2dx=2a1ln a+xax +C
    • ∫ d x a 2 − x 2 = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C \int \frac{dx}{a^2-x^2} = \frac{1}{2a}\ln \left|\frac{a+x}{a-x}\right| + C a2x2dx=2a1ln axa+x +C
      • ∫ d x 1 − x 2 = 1 2 ln ⁡ ∣ 1 + x 1 − x ∣ + C \int \frac{dx}{1-x^2} = \frac{1}{2}\ln\left| \frac{1+x}{1-x} \right| + C 1x2dx=21ln 1x1+x +C
    • ∫ d x x 2 + a 2 = ln ⁡ ( x + x 2 + a 2 ) + C \int \frac{dx}{\sqrt{{x^2 + a^2}}} = \ln ( x + \sqrt{x^2+ a^2} ) + C x2+a2 dx=ln(x+x2+a2 )+C
    • ∫ d x x 2 − a 2 = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ( ∣ x ∣ > ∣ a ∣ ) \int \frac{dx}{\sqrt{{x^2 - a^2}}} = \ln | x + \sqrt{x^2 - a^2} | + C \quad (|x| > |a|) x2a2 dx=lnx+x2a2 +C(x>a)
    • ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int \tan x \, dx = -\ln |\cos x| + C tanxdx=lncosx+C
    • ∫ sec ⁡ x d x = ∫ 1 cos ⁡ x d x = ln ⁡ ∣ tan ⁡ x + sec ⁡ x ∣ + C \int \sec x \, dx = \int \frac{1}{\cos x} \, dx = \ln |\tan{x} + \sec{x}| + C secxdx=cosx1dx=lntanx+secx+C
    • ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot x \, dx = \ln |\sin x| + C cotxdx=lnsinx+C
    • ∫ csc ⁡ x d x = ∫ 1 sin ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C = ln ⁡ ∣ tan ⁡ x 2 ∣ + C \int \csc x \, dx = \int \frac{1}{\sin x} \, dx = \ln |\csc{x} - \cot{x}| + C= \ln |\tan\frac{x}{2}| + C cscxdx=sinx1dx=lncscxcotx+C=lntan2x+C

常见凑微分:

  1. ∫ f ( a x + b ) d x = 1 a ∫ f ( a x + b ) d ( a x + b ) \int f(ax + b) \, dx = \frac{1}{a} \int f(ax + b) \, d(ax + b) f(ax+b)dx=a1f(ax+b)d(ax+b) (其中 a ≠ 0 a \neq 0 a=0)
  2. ∫ f ( a x n + b ) x n − 1 d x = 1 n a ∫ f ( a x n + b ) d ( a x n + b ) \int f(ax^n + b) x^{n-1} \, dx = \frac{1}{na} \int f(ax^n + b) \, d(ax^n + b) f(axn+b)xn1dx=na1f(axn+b)d(axn+b) (其中 a ≠ 0 a \neq 0 a=0)
  3. ∫ f ( e x ) e x d x = ∫ f ( e x ) d e x \int f(e^x) e^x \, dx = \int f(e^x) \, de^x f(ex)exdx=f(ex)dex
  4. ∫ f ( 1 x ) x 2 d x = − ∫ f ( 1 x ) d ( 1 x ) \int \frac{f\left(\frac{1}{x}\right)}{x^2} \, dx = - \int f\left(\frac{1}{x}\right) \, d\left(\frac{1}{x}\right) x2f(x1)dx=f(x1)d(x1)
  5. ∫ f ( ln ⁡ x ) x d x = ∫ f ( ln ⁡ x ) d ( ln ⁡ x ) \int \frac{f(\ln x)}{x} \, dx = \int f(\ln x) \, d(\ln x) xf(lnx)dx=f(lnx)d(lnx)
  6. ∫ f ( x ) x d x = 2 ∫ f ( x ) d ( x ) \int \frac{f(\sqrt{x}) }{\sqrt{x}}\, dx = 2 \int f(\sqrt{x}) \, d(\sqrt{x}) x f(x )dx=2f(x )d(x )
  7. ∫ f ( sin ⁡ x ) cos ⁡ x d x = ∫ f ( sin ⁡ x ) d ( sin ⁡ x ) \int f(\sin x) \cos x \, dx = \int f(\sin x) \, d(\sin x) f(sinx)cosxdx=f(sinx)d(sinx)
  8. ∫ f ( cos ⁡ x ) sin ⁡ x d x = − ∫ f ( cos ⁡ x ) d ( cos ⁡ x ) \int f(\cos x) \sin x \, dx = -\int f(\cos x) \, d(\cos x) f(cosx)sinxdx=f(cosx)d(cosx)
  9. ∫ f ( tan ⁡ x ) sec ⁡ 2 x d x = ∫ f ( tan ⁡ x ) d ( tan ⁡ x ) \int f(\tan x) \sec^2 x \, dx = \int f(\tan x) \, d(\tan x) f(tanx)sec2xdx=f(tanx)d(tanx)
  10. ∫ f ( cot ⁡ x ) csc ⁡ 2 x d x = − ∫ f ( cot ⁡ x ) d ( cot ⁡ x ) \int f(\cot x) \csc^2 x \, dx = -\int f(\cot x) \, d(\cot x) f(cotx)csc2xdx=f(cotx)d(cotx)
  11. ∫ f ( arcsin ⁡ x ) 1 − x 2 d x = ∫ f ( arcsin ⁡ x ) d ( arcsin ⁡ x ) \int \frac{f(\arcsin \sqrt{x}) }{\sqrt{1-x^2}} \, dx = \int f(\arcsin x) \, d(\arcsin x) 1x2 f(arcsinx )dx=f(arcsinx)d(arcsinx)
  12. ∫ f ( arctan ⁡ x ) 1 + x 2 d x = ∫ f ( arctan ⁡ x ) d ( arctan ⁡ x ) \int \frac{f(\arctan x)}{1+x^2} \, dx = \int f(\arctan x) \, d(\arctan x) 1+x2f(arctanx)dx=f(arctanx)d(arctanx)

常见换元:

  1. ∫ a 2 − x 2 d x \int \sqrt{a^2 - x^2} \, dx a2x2 dx,令 x = a sin ⁡ t x = a \sin t x=asint,则 d x = a cos ⁡ t d t dx = a \cos t \, dt dx=acostdt
  2. ∫ a 2 + x 2 d x \int \sqrt{a^2 + x^2} \, dx a2+x2 dx,令 x = a tan ⁡ t x = a \tan t x=atant,则 d x = a sec ⁡ 2 t d t dx = a \sec^2 t \, dt dx=asec2tdt
  3. ∫ x 2 − a 2 d x \int \sqrt{x^2 - a^2} \, dx x2a2 dx,令 x = a sec ⁡ t x = a \sec t x=asect,则 d x = a sec ⁡ t tan ⁡ t d t dx = a \sec t \tan t \, dt dx=asecttantdt

等价无穷小:

  • sin ⁡ x ∼ x \sin x \sim x sinxx
  • arcsin ⁡ x ∼ x \arcsin x \sim x arcsinxx
  • tan ⁡ x ∼ x \tan x \sim x tanxx
  • arctan ⁡ x ∼ x \arctan x \sim x arctanxx
  • ln ⁡ ( 1 + x ) ∼ x \ln(1 + x) \sim x ln(1+x)x
  • e x − 1 ∼ x e^x - 1 \sim x ex1x
  • 其他相似的等价无穷小关系

常见极限:

  1. lim ⁡ x → 0 x α ln ⁡ β x = 0 \lim\limits_{x \to 0} x^\alpha \ln^\beta x = 0 x0limxαlnβx=0,其中 α > 0 , β \alpha > 0, \beta α>0,β 为任意常数

  2. lim ⁡ x → + ∞ x a e β x = 0 \lim\limits_{x \to +\infty} \frac{x^a} {e^{\beta x} }= 0 x+limeβxxa=0,其中 α \alpha α 为任意常数, β > 0 \beta > 0 β>0

  3. lim ⁡ x → + ∞ ln ⁡ β x x α = 0 \lim\limits_{x \to +\infty} \frac{\ln^\beta x}{x^\alpha} = 0 x+limxαlnβx=0,其中 α > 0 , β \alpha > 0, \beta α>0,β 为任意常数

  4. lim ⁡ n → ∞ n n = 1 \lim\limits_{n \to \infty} \sqrt[n]{n} = 1 nlimnn =1

  5. lim ⁡ n → ∞ a n = 1 \lim\limits_{n \to \infty} \sqrt[n]{a} = 1 nlimna =1 (a>0)

  6. lim ⁡ x → 0 + x x = 1 \lim\limits_{x \to 0^+} x^x = 1 x0+limxx=1

泰勒公式:

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + … + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x) f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)

其中
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1

麦克劳林展开:

e x = 1 + x + 1 2 ! x 2 + … + 1 n ! x n + o ( x n ) e^x = 1 + x + \frac{1}{2!}x^2 + \ldots + \frac{1}{n!}x^n + o(x^n) ex=1+x+2!1x2++n!1xn+o(xn)

ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − … + ( − 1 ) n − 1 x n n + o ( x n ) \ln(1 + x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \ldots + (-1)^{n-1}\frac{x^n}{n} + o(x^n) ln(1+x)=x21x2+31x3+(1)n1nxn+o(xn)

sin ⁡ x = x − 1 3 ! x 3 + … + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + o ( x 2 n + 1 ) \sin x = x - \frac{1}{3!}x^3 + \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) sinx=x3!1x3++(1)n(2n+1)!x2n+1+o(x2n+1)

cos ⁡ x = 1 − 1 2 ! x 2 + … + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) \cos x = 1 - \frac{1}{2!}x^2 + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}) cosx=12!1x2++(1)n(2n)!x2n+o(x2n)

tan ⁡ x = x + 1 3 x 3 + o ( x 3 ) \tan x = x + \frac{1}{3}x^3 + o(x^3) tanx=x+31x3+o(x3)

arcsin ⁡ x = x + 1 6 x 3 + o ( x 3 ) \arcsin x = x + \frac{1}{6}x^3 + o(x^3) arcsinx=x+61x3+o(x3)

1 1 − x = 1 + x + x 2 + … + x n + o ( x n ) \frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + o(x^n) 1x1=1+x+x2++xn+o(xn)

1 1 + x = 1 − x + x 2 + … + ( − 1 ) n x n + o ( x n ) \frac{1}{1+x} = 1 - x + x^2 + \ldots + (-1)^n x^n + o(x^n) 1+x1=1x+x2++(1)nxn+o(xn)

( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + … + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + o ( x n ) (1 + x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \ldots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^n + o(x^n) (1+x)m=1+mx+2!m(m1)x2++n!m(m1)(mn+1)xn+o(xn)

间断点:

  • 可去间断点: lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0} f(x) xx0limf(x) 存在但不等于 f ( x 0 ) f(x_0) f(x0) lim ⁡ x → x 0 f ( x ) \lim\limits_{x \to x_0} f(x) xx0limf(x) 存在,但 f ( x ) f(x) f(x) x 0 x_0 x0 处无定义。
  • 跳跃间断点: lim ⁡ x → x 0 + f ( x ) \lim\limits_{x \to x_0^+} f(x) xx0+limf(x), lim ⁡ x → x 0 − f ( x ) \lim\limits_{x \to x_0^-} f(x) xx0limf(x) 存在且不相等。
  • 无穷间断点: lim ⁡ x → x 0 + f ( x ) = ∞ \lim\limits_{x \to x_0^+} f(x) = \infty xx0+limf(x)= lim ⁡ x → x 0 − f ( x ) = ∞ \lim\limits_{x \to x_0^-} f(x) = \infty xx0limf(x)=
  • 震荡间断点: x → x 0 x \to x_0 xx0, f ( x ) f(x) f(x) 在某区间内有无限多次变动。

渐近线:

  • 水平渐近线: lim ⁡ x → + ∞ f ( x ) = a \lim\limits_{x \to +\infty} f(x) = a x+limf(x)=a lim ⁡ x → − ∞ f ( x ) = a \lim\limits_{x \to -\infty} f(x) = a xlimf(x)=a
  • 铅直渐近线: 若 lim ⁡ x → x 0 − f ( x ) = ∞ \lim\limits_{x \to x_0^-} f(x) = \infty xx0limf(x)= lim ⁡ x → x 0 + f ( x ) = ∞ \lim\limits_{x \to x_0^+} f(x) = \infty xx0+limf(x)=
  • 斜渐近线: k = lim ⁡ x → ∞ f ( x ) x k = \lim\limits_{x \to \infty} \frac{f(x)}{x} k=xlimxf(x), b = lim ⁡ x → ∞ [ f ( x ) − k x ] b = \lim\limits_{x \to \infty} [f(x) - kx] b=xlim[f(x)kx]

微分中值定理:

  • 费马定理:即极大极小值定义。
  • 泰勒公式 f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + … + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 f(x) = f (x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1} f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+(n+1)!f(n+1)(ξ)(xx0)n+1

在闭区间连续且开区间可导时:

  • 罗尔定理 f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b)
  • 拉格朗日中值定理 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b)-f(a)}{b-a} = f'(\xi) baf(b)f(a)=f(ξ)
  • 柯西中值定理 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ),其中 g ′ ( x ) ≠ 0 g'(x) \neq 0 g(x)=0

定积分结论:

  • 区间对称性 ∫ − l l f ( x ) d x = { 2 ∫ 0 1 f ( x ) d x , if  f ( x ) is even 0 , if  f ( x ) is odd \int_{-l}^{l} f(x)dx = \begin{cases} 2\int_0^1 f(x)dx, & \text{if } f(x) \text{ is even} \\ 0, & \text{if } f(x) \text{ is odd} \end{cases} llf(x)dx={201f(x)dx,0,if f(x) is evenif f(x) is odd

  • 定积分换元 ∫ a b f ( x ) d x = ∫ a b f ( a + b − t ) d t = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_{a}^{b} f(x)dx = \int_{a}^{b} f(a + b - t)dt = \frac{1}{2}\int_{a}^{b}[f(x) + f(a + b - x)]dx abf(x)dx=abf(a+bt)dt=21ab[f(x)+f(a+bx)]dx

  • 周期函数 ∫ a + T a f ( x ) d x = ∫ T 0 f ( x ) d x = ∫ T 2 − T 2 f ( x ) d x \int_{a+T}^{a} f(x)dx = \int_{T}^{0} f(x)dx = \int_{\frac{T}{2}}^{-\frac{T}{2}} f(x)dx a+Taf(x)dx=T0f(x)dx=2T2Tf(x)dx

  • 华理士点火定理

    • ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋯ 1 2 ⋅ π 2 , n is even n − 1 n ⋅ n − 3 n − 2 ⋯ 2 3 ⋅ 1 , n > 1 is odd \int_0^{\frac{\pi}{2}} \sin^n xdx = \int_0^{\frac{\pi}{2}} \cos^n xdx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2}, & n \text{ is even} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{3} \cdot 1, & n > 1 \text{ is odd} \end{cases} 02πsinnxdx=02πcosnxdx={nn1n2n3212π,nn1n2n3321,n is evenn>1 is odd
  • 三角函数定积分:

    • ∫ − π π sin ⁡ n x sin ⁡ m x d x = ∫ 0 2 π sin ⁡ n x sin ⁡ m x d x = { π , n = m 0 , n ≠ m \int_{-\pi}^{\pi} \sin nx \sin mx dx = \int_0^{2\pi} \sin nx \sin mx dx = \begin{cases} \pi, & n = m \\ 0, & n \neq m \end{cases} ππsinnxsinmxdx=02πsinnxsinmxdx={π,0,n=mn=m.
    • ∫ − π π sin ⁡ n x cos ⁡ m x d x = ∫ 0 2 π sin ⁡ n x cos ⁡ m x d x = 0 \int_{-\pi}^{\pi} \sin nx \cos mx dx = \int_0^{2\pi} \sin nx \cos mx dx = 0 ππsinnxcosmxdx=02πsinnxcosmxdx=0.
    • ∫ − π π cos ⁡ n x cos ⁡ m x d x = ∫ 0 2 π cos ⁡ n x cos ⁡ m x d x = { π , n = m 0 , n ≠ m \int_{-\pi}^{\pi} \cos nx \cos mx dx = \int_0^{2\pi} \cos nx \cos mx dx = \begin{cases} \pi, & n = m \\ 0, & n \neq m \end{cases} ππcosnxcosmxdx=02πcosnxcosmxdx={π,0,n=mn=m.

柯西不等式

f ( x ) f(x) f(x) g ( x ) g(x) g(x) 在闭区间 [ a , b ] [a, b] [a,b] 上连续且可积,则有
( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ( ∫ a b f 2 ( x ) d x ) ( ∫ a b g 2 ( x ) d x ) . \left( \int_a^b f(x)g(x)dx \right)^2 \leq \left( \int_a^b f^2(x)dx \right) \left( \int_a^b g^2(x)dx \right). (abf(x)g(x)dx)2(abf2(x)dx)(abg2(x)dx).

变限积分

  • 如果 F ( x ) = ∫ ϕ ( x ) a f ( t ) d t F(x) = \int_{\phi(x)}^{a} f(t)dt F(x)=ϕ(x)af(t)dt,则 F ′ ( x ) = − f [ ϕ ( x ) ] ⋅ ϕ ′ ( x ) F'(x) = -f[\phi(x)] \cdot \phi'(x) F(x)=f[ϕ(x)]ϕ(x)
  • d d x ( ∫ ϕ 1 ( x ) ϕ 2 ( x ) f ( t ) d t ) = f [ ϕ 2 ( x ) ] ϕ 2 ′ ( x ) − f [ ϕ 1 ( x ) ] ϕ 1 ′ ( x ) \frac{d}{dx} \left( \int_{\phi_1(x)}^{\phi_2(x)} f(t) dt \right) = f[\phi_2(x)] \phi_2'(x) - f[\phi_1(x)] \phi_1'(x) dxd(ϕ1(x)ϕ2(x)f(t)dt)=f[ϕ2(x)]ϕ2(x)f[ϕ1(x)]ϕ1(x)
  • F ( x ) = ∫ x a f ( x − t ) d t F(x) = \int_{x}^{a} f(x - t)dt F(x)=xaf(xt)dt,设 u = x − t u = x - t u=xt,那么 F ( x ) = ∫ x − a 0 f ( u ) d u F(x) = \int_{x-a}^{0} f(u)du F(x)=xa0f(u)du,因此 F ′ ( x ) = − f ( x − a ) F'(x) = -f(x - a) F(x)=f(xa).(设x>a,则x<t<a → -a<-t<-x → x-a<u<0)

反常积分

  • ∫ a + ∞ f ( x ) d x = lim ⁡ b → + ∞ ∫ a b f ( x ) d x \int_a^{+\infty} f(x)dx = \lim\limits_{b \to +\infty} \int_a^b f(x)dx a+f(x)dx=b+limabf(x)dx

  • ∫ − ∞ b f ( x ) d x = lim ⁡ a → − ∞ ∫ a b f ( x ) d x \int_{-\infty}^b f(x)dx = \lim\limits_{a \to -\infty} \int_a^b f(x)dx bf(x)dx=alimabf(x)dx

  • ∫ + ∞ − ∞ f ( x ) d x = ∫ c − ∞ f ( x ) d x + ∫ + ∞ c f ( x ) d x \int_{+\infty}^{-\infty} f(x)dx = \int_c^{-\infty} f(x)dx + \int_{+\infty}^c f(x)dx +f(x)dx=cf(x)dx++cf(x)dx

  • ∫ a b f ( x ) d x = lim ⁡ ε → 0 + ∫ a + ε b f ( x ) d x = F ( b ) − lim ⁡ x → a + F ( a ) \int_a^b f(x)dx = \lim\limits_{ε \to 0^+} \int_{a+\varepsilon}^b f(x)dx=F(b)-\lim\limits_{x \to a^+}F(a) abf(x)dx=ε0+lima+εbf(x)dx=F(b)xa+limF(a)

    • 其中 x = a x = a x=a f ( x ) f(x) f(x) 的瑕点, c=a+ε
  • ∫ a b f ( x ) d x = lim ⁡ ε → 0 + ∫ a b − ε f ( x ) d x = lim ⁡ x → b − F ( x ) − F ( a ) \int_a^b f(x)dx = \lim\limits_{ε \to 0^+} \int_a^{b-\varepsilon} f(x)dx=\lim\limits_{x \to b^-}F(x)-F(a) abf(x)dx=ε0+limabεf(x)dx=xblimF(x)F(a)

    • 其中 x = b x = b x=b f ( x ) f(x) f(x) 的瑕点,c=b−ε
  • ∫ a b f ( x ) d x = lim ⁡ ε → 0 + ∫ a c − ε f ( x ) d x + lim ⁡ η → 0 + ∫ c + η b f ( x ) d x = ∫ a c f ( x ) d x − ∫ c b f ( x ) d x \int_a^b f(x)dx = \lim\limits_{ε \to 0^+} \int_a^{c-\varepsilon} f(x)dx + \lim\limits_{\eta \to 0^+} \int_{c+\eta}^b f(x)dx=\int_a^c f(x)dx-\int_c^b f(x)dx abf(x)dx=ε0+limacεf(x)dx+η0+limc+ηbf(x)dx=acf(x)dxcbf(x)dx

    • 其中 x = c x = c x=c f ( x ) f(x) f(x) 的瑕点

特殊反常积分

  1. ∫ 0 1 1 x p d x = { 收敛 , 0 < p < 1 发散 , p ≥ 1 \int_0^1 \frac{1}{x^p}dx= \begin{cases} 收敛, 0<p<1 \\ 发散, p \geq 1 \end{cases} 01xp1dx={收敛,0<p<1发散,p1

  2. ∫ 1 + ∞ 1 x p d x = { 收敛 , p > 1 发散 , p ≤ 1 \int_1^{+\infty} \frac{1}{x^p}dx= \begin{cases} 收敛, p > 1 \\ 发散, p \leq 1 \end{cases} 1+xp1dx={收敛,p>1发散,p1

  3. ∫ 2 + ∞ 1 x ln ⁡ p x d x = { 收敛 , p > 1 发散 , p ≤ 1 \int_2^{+\infty} \frac{1}{x \ln^p x}dx =\begin{cases} 收敛, p > 1 \\ 发散, p \leq 1 \end{cases} 2+xlnpx1dx={收敛,p>1发散,p1

  4. ∫ 1 + ∞ x k e − x p d x \int_1^{+\infty} {x^ke^{-x^p}}dx 1+xkexpdx,其中 k k k 为常数且 p > 0 p > 0 p>0 时均收敛。

  5. ∫ 0 1 ln ⁡ k x x p d x \int_0^1 \frac{\ln^k x} { x^p} dx 01xplnkxdx,其中 k k k 为常数且 p < 1 p < 1 p<1 时均收敛。

面积/体积

  • 两曲线之间的面积:

    • S = ∫ a b ∣ f ( x ) − g ( x ) ∣ d x S = \int_{a}^{b} |f(x) - g(x)|dx S=abf(x)g(x)dx
  • 旋转体体积:

    • 绕 X 轴: V x = π ∫ a b f 2 ( x ) d x V_x = \pi \int_{a}^{b} f^2(x)dx Vx=πabf2(x)dx
    • 绕 Y 轴: V y = 2 π ∫ a b ∣ x f ( x ) ∣ d x V_y = 2\pi \int_{a}^{b} |xf(x)|dx Vy=2πabxf(x)dx
  • 弧长/侧面积:

    • 直角坐标系下: L : y = f ( x ) , a ≤ x ≤ b , l = ∫ a b 1 + y ′ 2 d x L:\ y = f(x),\ a \leq x \leq b,\ l = \int_{a}^{b} \sqrt{1 + y'^2}dx L: y=f(x), axb, l=ab1+y′2 dx
    • 参数方程下: L : { x = x ( t ) y = y ( t ) , a ≤ t ≤ b , l = ∫ a b [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 d t L:\begin{cases}\ x = x(t) \\y = y(t)\end{cases},\ a \leq t \leq b,\ l = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2}dt L:{ x=x(t)y=y(t), atb, l=ab[x(t)]2+[y(t)]2 dt
    • 极坐标系下: L : r = r ( θ ) , α ≤ θ ≤ β , l = ∫ α β r 2 + r ′ 2 d θ L:\ r = r(\theta),\ \alpha \leq \theta \leq \beta,\ l = \int_{\alpha}^{\beta} \sqrt{r^2 + r'^2}d\theta L: r=r(θ), αθβ, l=αβr2+r′2 dθ
  • 计算平面曲线上以函数 f ( x ) f(x) f(x) 为高度的旋转曲线绕 X 轴旋转而成的体积。 s s s 表示平面曲线的弧长。
    S = ∫ a b 2 π f ( x ) d s S = \int_{a}^{b} 2\pi f(x)ds S=ab2πf(x)ds

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/776219.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

读所罗门的密码笔记04_社会信用

1. 人工智能 1.1. 人工智能可以帮助人们处理复杂的大气问题&#xff0c;完善现有的气候变化模拟&#xff0c;帮助我们更好地了解人类活动对环境造成的危害&#xff0c;以及如何减少这种危害 1.2. 人工智能也有助于减少森林退化和非法砍伐 1.3. 人工智能甚至可以将我们从枯燥…

代码随想录算法训练营 Day29 回溯算法5

Day29 回溯算法5 491.递增子序列 思路 跟上一题类似&#xff0c;需要去重 但问题是该题要求递增子序列&#xff0c;因此不能在一开始将数组排序&#xff0c;不知道这种情况如何去重 根据代码随想录 要点&#xff1a; 本题不可以对数组进行排序对于每一层使用uset记录取过的…

RISC-V特权架构 - 中断定义

RISC-V特权架构 - 中断定义 1 中断类型1.1 外部中断1.2 计时器中断1.3 软件中断1.4 调试中断 2 中断屏蔽3 中断等待4 中断优先级与仲裁5 中断嵌套6 异常相关寄存器 本文属于《 RISC-V指令集基础系列教程》之一&#xff0c;欢迎查看其它文章。 1 中断类型 RISC-V 架构定义的中…

idea打开文件乱码,设置编码

idea整个项目都设置了utf-8了&#xff0c;但是还是有一个文件是其他编码_(ཀ」 ∠)__ 。 配置项目编码 在设置中设置编码 配置具体目录的编码 上面的设置之后&#xff0c;还是有几个文件一直是乱码&#xff0c;需要单独配置。 偶尔引入的依赖中的文件也会乱码&#xff0c;需…

题目:摆花(蓝桥OJ 0389)

问题描述&#xff1a; 题解&#xff1a; #include <bits/stdc.h> using namespace std; using ll long long; const int N 105; const ll p 1e6 7; ll a[N], dp[N][N];int main() {int n, m; cin >> n >> m;for(int i 1; i < n; i)cin >> a[i…

JVM内存 垃圾收集器

JVM&#xff08;Java虚拟机&#xff09;内存管理和垃圾收集器是Java编程中非常重要的概念。JVM内存主要划分为几个不同的区域&#xff0c;每个区域都有其特定的用途。而垃圾收集器则是负责自动管理这些内存区域&#xff0c;回收不再使用的对象&#xff0c;以释放内存。 首先&a…

什么是双亲委派机制,如何打破双亲委派

了解双亲委派前&#xff0c;我们需要先了解下类加载器。 什么是类加载器呢 在Java中&#xff0c;类加载器&#xff08;ClassLoader&#xff09;负责将类文件加载到Java虚拟机中&#xff0c;并生成对应的 Class 对象。类加载器的分类和对应的作用如下&#xff1a; 启动类加载器…

【科研基础】VAE: Auto-encoding Variational Bayes

[1]Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013). [2] [论文简析]VAE: Auto-encoding Variational Bayes[1312.6114] [3] The Reparameterization Trick [4] 变分法的基本原理是什么? 文章目录 1-…

我的编程之路:从非计算机专业到Java开发工程师的成长之路 | 学习路线 | Java | 零基础 | 学习资源 | 自学

小伙伴们好&#xff0c;我是「 行走的程序喵」&#xff0c;感谢您阅读本文&#xff0c;欢迎三连~ &#x1f63b; 【Java基础】专栏&#xff0c;Java基础知识全面详解&#xff1a;&#x1f449;点击直达 &#x1f431; 【Mybatis框架】专栏&#xff0c;入门到基于XML的配置、以…

【服务器】常见服务器高危端口

常见的服务器高危端口信息 端口号协议描述21FTP用于文件传输协议 (FTP)&#xff0c;用于在客户端和服务器之间传输文件。FTP 的安全性较低&#xff0c;容易受到中间人攻击。22SSH用于安全外壳协议 (SSH)&#xff0c;用于通过加密的连接远程管理服务器。尽管 SSH 是加密的&…

负荷频率控制LFC,自抗扰ADRC控制,麻雀SSA算法优化自抗扰参数,两区域二次调频simulink/matlab

红色曲线为优化结果&#xff0c;蓝色曲线为没有自抗扰和没有优化的结果&#xff01;

【ansible】Failed to connect to the host via ssh Permission denied

故障现象 yeqiangyeqiang-MS-7B23:/data/VirtualBox VMs$ ansible all -m pingnode-2 | UNREACHABLE! > { "changed": false, "msg": "Failed to connect to the host via ssh: \nAuthorized users only. All activities may be monitore…

基于springboot实现蜗牛兼职网平台系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现蜗牛兼职网平台系统演示 摘要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;蜗牛兼职网当然也不能排除在外。蜗牛兼职网是以实际运用为开发背景&#xff…

【C语言】多文件编程以及static关键字

1、多文件编程 把函数声明放在头文件xxx.h中&#xff0c;在主函数中包含相应头文件在头文件对应的xxx.c中实现xxx.h声明的函数 a、主文件 #include<stdio.h> #include "MyMain.h"//需要包含头文件&#xff0c;头文件包含我们自定义的函数int main(){int num…

6、鸿蒙学习-Stage模型应用程序包结构

基于Stage模型开发的应用&#xff0c;经编译打包后&#xff0c;其应用程序的结构如下图应用程序包结构&#xff08;Stage模型&#xff09;所示。开发者需要熟悉应用程序包结构相关的基本概念。 一、在开发态&#xff0c;一个应用包含一个或者多个Module&#xff0c;可以在DevE…

【管理咨询宝藏60】顶级咨询公司对医药行业的研究报告

【管理咨询宝藏60】顶级咨询公司对医药行业的研究报告 【格式】PDF 【关键词】医疗行业、战略咨询、行业洞察 【核心观点】 - 195页精品内容&#xff0c;让你彻底透视医疗行业的发展现状和未来趋势 - 前20大交易约占医疗交易总额的65%&#xff1b;医疗行业大部分为制药业投资交…

面向对象编程(一)

面向对象编程&#xff08;一&#xff09; 面向过程&面向对象 面向过程思想 1. 步骤清晰简单&#xff0c;第一步做什么&#xff0c;第二步做什么......2. 面对过程适合处理一些较为简单的问题面向对象思想 物以类聚&#xff0c;分类的思维模式&#xff0c;思考问题…

住宅IP是什么?与机房IP有哪些区别?

随着互联网的普及和发展&#xff0c;不同类型的IP地址在网络世界中扮演着重要角色。在网络架构中&#xff0c;机房IP和住宅IP是两种常见的IP类型&#xff0c;它们各有优劣&#xff0c;适用于不同的场景和需求。本文将对机房IP和住宅IP进行技术对比&#xff0c;并给出选择合适IP…

c++的学习之路:5、类和对象(1)

一、面向对象和面向过程 在说这个定义时&#xff0c;我就拿c语言举例&#xff0c;在c语言写程序的时候&#xff0c;基本上就是缺什么函数&#xff0c;就去手搓一个函数&#xff0c;写的程序也只是调用函数的&#xff0c;而c就是基于面向对象的开发&#xff0c;他关注的不再是单…

DFS算法(C/C++)(内含立例题)

DFS&#xff1a; DFS又称深度优先搜索&#xff0c;是一种图运算方法&#xff0c;它从第一个节点走起&#xff0c;一直往下走&#xff0c;一直走到不能继续再走&#xff0c;就返回上一个节点&#xff0c;继续搜索其他地方&#xff0c;直到找到目标节点为止。 DFS可以解决迷宫问…