数据结构/C++:位图 布隆过滤器

数据结构/C++:位图 & 布隆过滤器

    • 位图
      • 实现
      • 应用
    • 布隆过滤器
      • 实现
      • 应用


哈希表通过映射关系,实现了O(1)的复杂度来查找数据。相比于其它数据结构,哈希在实践中是一个非常重要的思想,本博客将介绍哈希思想的两大应用,位图与布隆过滤器。


位图

看到以下题目:

给40亿个无序不重复的无符号整数(unsigned int)。如何判断一个数字是否在这40亿个数字之中?

大部分人拿到这道题,也许会想到mapset哈希这样的容器。但是其有40亿个数据,而且是整型,最后估算下来,光是数据就占用了十多个G,何况还要用红黑树,哈希表这样的结构存储下来,这是不现实的。

仔细想想,对于这道题目而言,一个数据只有两种状态:在/不在。如果我们想要标识两种状态,其实只需要一个比特位就够了,0表示不存在,1表示存在。通过哈希的映射思想,我们可以把每一个数据映射到一个比特位中,这就是位图的概念

在STL库中,已经为我们提供了位图bitset,我先简单讲解一下bitset的接口,再给大家实现一个位图。

在这里插入图片描述

bitset中,存在着一个非类型模板参数N,其代表位图中要开多少个比特位。

接口功能
operator[]返回对应位置的引用
count计算所有比特位中1的个数
size返回比特位的个数
test检测某一个位,是1返回true,是0返回false
set把某一个位的值改为1
reset把某一个位的值改为0

实现

基本框架如下:

template<size_t N>
class bitSet
{
public:private:vector<int> _bits;
};

我们把位图做成了一个模板,模板参数N用于传参,代表要开几个位。那么我们要如何开出N个比特位?其实我们可以用一个int类型的数组vector,一个int有32bit,那么我们开出来的元素个数就是N / 32个。但是由于C++的除法会向下取整,所以我们要额外+1,避免开出来的位不够。这样我们就可以写一个构造函数:

template<size_t N>
class bitSet
{
public:bitSet(){_bits.resize(N / 32 + 1, 0);}private:vector<int> _bits;
};

接着我们来实现bitset中最重要的几个接口:

set

set接口的功能是把指定的位改为1。
现在传进来一个整数x,我们要如何定位到它属于vector中哪一个元素的哪一个位呢?
其实也很简单,一个元素有32bit,那么我们让x / 32就可以得到其对应的整数了。至于它在整数的第几位,那就是x % 32

size_t i = x / 32; // vector的第i个元素
size_t j = x % 32; // 第i个元素的第j个比特位

现在我们的任务就是把第i个元素的第j个比特位变成1。我们可以把数字1左移j位,然后让_bits[i]与左移后的值按位或。这样就不会影响到其他位,还能把目标位变为1。

比如把11001100的第4位变为1:

   11001100 //待修改数据00000001 //数字100010000 //数字1左移4位
------------11001100| 00010000 //按位或------------11011100

可以看到,我们确实把11001100的第4位变为1了。

set接口如下:

void set(size_t x)
{assert(x <= N);size_t i = x / 32;size_t j = x % 32;_bits[i] |= (1 << j);
}

reset
reset接口的功能是把指定的位改为0。

通过之前同样的办法,定位到第i个元素的第j位,接下来的任务就是把第i个元素的第j位变为0。想要让一个位变为0,只要让它按位与上0就可以了,但是我们其它的位不能变,要按位与1。也就是说我们要拿到第j位为0,其它位为1的数据。

我们之前通过数字1的左移,可以拿到第j位为1,其他位为0的数据。那么我们直接取反,就可以得到第j位为0,其它位为1的数据了。

代码如下:

void reset(size_t x)
{assert(x <= N);size_t i = x / 32;size_t j = x % 32;_bits[i] &= ~(1 << j);
}

test
test接口的功能是检测指定位的值是0还是1。

我们直接让1左移j位,按位与就行了,代码如下:

bool test(size_t x)
{assert(x <= N);size_t i = x / 32;size_t j = x % 32;return _bits[i] & (1 << j);
}

这就是位图最重要的三个操作了,整体还是非常简单的。至于其他接口,都只是锦上添花的作用,而且实现起来也很简单,这里不做讲解了。

位图在处理大量数据时,有非常明显的优势,其主要功能如下:

  1. 标识一个数据的状态
  2. 以O(1)的复杂度查找一个数据的状态
  3. 排序 + 去重

应用

我们再看到几个题目,来加深对位图的理解:

给两个文件,分别有100亿个整数(unsigned int),我们只有1G内存,如何找到两个文件的交集?

根据估算,一个文件的大小大约就在37G,这是不可能放进内存中直接比较的,因此我们可以考虑位图。因为所有数据都是整数,所以数据范围在0 - 42亿之间,我们要开42亿个位。经过计算,42亿bit,大概也就是0.48GB,对于内存而言,还是很友好的。

我们分别把两个文件的数据分别插入到两个位图中,此时我们就有两个范围是0 - 42亿数的位图了,总共也就是0.96GB,在1G限制范围内。然后我们再遍历两个位图,分别对比每一个位,只要两张位图该位都是1,那就是文件的交集。

一个文件有100亿个整数(int),设计算法找到出现次数不超过2次的所有整数

先前我们通过一个比特位标识了一个数据在与不在,但是此题总数据存在多种状态:不存在存在一个存在两个以上三种状态。按照位图的思想,标识三种状态,至少需要2bit,比如00表示不存在,01表示存在一个,10表示存在两个及以上。这样我们就可以设计算法了:

template<size_t N>
class two_bit_set
{
public:void set(size_t x){//00 -> 01if (_bs1.test(x) == false&& _bs2.test(x) == false){_bs2.set(x);}//01 -> 10else if (_bs1.test(x) == false&& _bs2.test(x) == false){_bs1.set(x);_bs2.reset(x);}//10 -> 不处理}int test(size_t x){if (_bs1.test(x) == false&& _bs2.test(x) == false){return 0;}else if (_bs1.test(x) == false&& _bs2.test(x) == false){return 1;}else{return 2;//出现2次以上}}private:bitset<N> _bs1;bitset<N> _bs2;
};

以上代码中,我们在类中定义了两个位图,两个位图的同一个位用于标识一个数据的不同状态,这样就可以区分数据的情况了。

以此类推,当我们发现一张位图无法标识一个数据的状态数目时,就可以用多张位图组合


布隆过滤器

假设某个游戏公司,在开服第一天因为过于火爆,有大量的玩家同时注册游戏,这给后台游戏服务器造成了大量压力。其中一个问题就是:游戏要求玩家之前不能有重复的名字,但是每次玩家输入一个名字的时候,都要去后台的数据库查询这个名字存不存在。这导致数据库访问非常迟缓,请问要如缓解这个问题?

以上问题在于,每当一个玩家输入一个名称(字符串),都要去数据库查询,看是否存在相同的名字。有没有办法能够快速查询到一个名字是否重复呢?这就不得不提布隆过滤器了。

布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概
率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存
在”
,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。

现在我们有一下字符串:

  • "Hello python"
  • "Hello C++"
  • "Hello C#"
  • "Hello Go"
  • "Hello CSDN"

假设我们现在有一个位图,接着我们把每一个字符串映射到位图中,我们是否可以通过位图来判定一个字符串存不存在呢?这是不准确的,因为两个字符串有可能会被映射到同一个位上,这就会导致误差,于是布隆觉得,我们能不能把误差降到非常低呢?

于是布隆过滤器的思想就诞生了:

把一个数据通过三套不同的哈希函数,映射到三个位上

当我们查找数据的时候,只有这个数据上的三个位都为1,才说明这个数据存在。

比如这样:
在这里插入图片描述

图中竖着的长条,是一个位图,我们输入了一个Hello C++字符串,然后通过三种不同的哈希函数,把这个字符串映射到了三个不同的位上。

接着我们再插入一个Hello python
在这里插入图片描述

Hello python也映射到了三个位,而且没有与Hello C++发生重复。但是也有特殊的情况,比如我再插入Hello Go

在这里插入图片描述
可以看到,Hello C++Hello Go有一个位发生了重复,这会不会造成数据的误判呢?答案是不会的,因为这两个字符串的另外两个位不同,只有一个字符串的三个位都存在,才说明这个字符串有可能存在,比如我现在查询Hello CSDN是否在位图中:
在这里插入图片描述
可以看到,Hello CSDN这个字符串,也映射到了三个位,其中有一个位是1,而另外两个位是0只要有一个位对不上,就说明这个字符串一定不存在。因此Hello CSDN不存在在位图中。

接下来我们就来实现一个这样的布隆过滤器:


实现

哈希函数
这里我们需要用到三个字符串 -> 整型的哈希函数,这里我取用了目前经过研究效果比较好的三个算法:BKDRAPDJB

struct HashFuncBKDR
{//BKDRsize_t operator()(const string& s){size_t hash = 0;for (auto ch : s){hash += ch;hash *= 131;}return hash;}
};struct HashFuncAP
{//APsize_t operator()(const string& s){size_t hash = 0;int i;for (i = 0; i < s.size(); i++){if ((i & 1) == 0)// 偶数位字符hash ^= ((hash << 7) ^ (s[i]) ^ (hash >> 3));else//奇数位字符hash ^= (~((hash << 11) ^ (s[i]) ^ (hash >> 5)));}return hash;}
};struct HashFuncDJB
{//DJBsize_t operator()(const string& s){register size_t hash = 5381;for (auto ch : s)hash = hash * 33 ^ ch;return hash;}
};

这个算法的内部实现并不重要,我们只需要知道,它们是三套不同的规则,可以把一个字符串映射到三个不同的位上。

基本结构

template<size_t N,class K = string,class Hash1 = HashFuncBKDR,class Hash2 = HashFuncAP,class Hash3 = HashFuncDJB>
class BloomFilter
{
public:private:bitset<5 * N> _bs;
};

布隆过滤器BloomFilter有五个模板参数,N代表要插入的数据个数,K代表要处理的类型,剩下三个是不同的哈希函数,用于映射不同的位。

假设x为哈希函数的个数,m是布隆过滤器的长度,n是插入元素的个数,经过研究发现,三者满足以下关系式时,布隆过滤器的误判率最低:

x = m n ln ⁡ 2 x=\frac{m}{n} \ln 2 x=nmln2

此处,我们的哈希函数x = 3,那么我们的m大约是n4.3倍。因此在哈希函数为3个的情况下,布隆过滤器的长度最好是插入数据个数的4.3倍。此处我们取整数5倍,因此有bitset<5 * N> _bs;

Set接口

想要插入一个数据,其实就是通过三个哈希函数计算出三个映射位置,并把它们设置为1。
代码如下:

void Set(const K& key)
{size_t hash1 = Hash1()(key) % (5 * N);size_t hash2 = Hash2()(key) % (5 * N);size_t hash3 = Hash3()(key) % (5 * N);_bs.set(hash1);_bs.set(hash2);_bs.set(hash3);
}

Test接口

想要检测一个数据是否存在,就是检测出这个数据对应的三个映射位置是否都是1。

代码如下:

bool Test(const K& key)
{size_t hash1 = Hash1()(key) % (5 * N);if (_bs.test(hash1) == false)return false;size_t hash2 = Hash2()(key) % (5 * N);if (_bs.test(hash2) == false)return false;size_t hash3 = Hash3()(key) % (5 * N);if (_bs.test(hash3) == false)return false;return true; // 存在误判
}

布隆过滤器不能轻易地删除一个数据,比如以下情况:

在这里插入图片描述

字符串Hello C++Hello Go有一个位重复了,如果我们贸然删掉字符串Hello Go,那么就会导致Hello C++有一个位丢失了,那么我们不仅查找不到被删除的Hello Go,也查找不到Hello C++了。因此布隆过滤器不支持删除操作。


应用

布隆过滤器有以下特性:

  1. 如果检测到一个数据不存在,那么这个数据一定不存在
  2. 如果检测到一个数据存在,那么这个数据有可能存在

布隆过滤器最大特点就在于可以100%检测一个数据的不存在。那么我们回到最开始的问题:

每当一个玩家输入一个名称(字符串),都要去数据库查询,看是否存在相同的名字。有没有办法能够快速查询到一个名字是否重复呢?

我们可以把所有名字映射到布隆过滤器中,所有玩家输入一个字符串后要经过以下过程:

  1. 检测该字符串在不在布隆过滤器中
  • 如果不存在,说明这个字符串一定不存在,此时直接返回结果,告诉玩家该名称可用
  • 如果存在,说明这个字符串可能存在,此时再到数据库中去查找

布隆过滤器之所以叫做过滤器,就在于它可以过滤掉所有不存在的情况。

不妨想象一下,现在让两个人给自己的游戏账号取一个名字,它们重复的概率有多高呢?其实很低了。如果一个用户输入一个游戏名称,有80%的概率是不重复的,那么布隆过滤器就可以过滤掉80%的访问量,给数据库降低80%的压力。而且布隆过滤器搜索的时间复杂度仅仅为O(1),可见布隆过滤器有多么强大。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/775996.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTTPS:原理、使用方法及安全威胁

文章目录 一、HTTPS技术原理1.1 主要技术原理1.2 HTTPS的工作过程1.2.1 握手阶段1.2.2 数据传输阶段 1.3 CA证书的签发流程1.4 HTTPS的安全性 二、HTTPS使用方法三、HTTPS安全威胁四、总结 HTTPS&#xff08;全称&#xff1a;Hyper Text Transfer Protocol over Secure Socket …

git提交-分支开发合并-控制台操作

git提交-分支开发合并-控制台操作 git的基本概念工作区、暂存区和版本库工作区&#xff1a;就是你在电脑里能看到的目录&#xff08;隐藏目录 .git不算工作区&#xff09;。暂存区&#xff1a;英文叫 stage 或 index。一般存放在本地的.git目录下的index 文件&#xff08;.git/…

036—pandas 按行将列名根据值由大到小排序

前言 数据处理中&#xff0c;按行排列的列名可以提供更直观的数据探索和分析方式。 你可以逐行查看列名&#xff0c;了解每列的含义和特征&#xff0c;有助于更好地理解数据集的结构和内容。 需求&#xff1a; 需要增加一列「分布方式」&#xff0c;每行的值是本行基金名称对…

双指针算法:三数之和

文章目录 一、[题目链接&#xff1a;三数之和](https://leetcode.cn/problems/3sum/submissions/515727749/)二、思路讲解三、代码演示 先赞后看&#xff0c;养成习惯&#xff01;&#xff01;&#xff01;^ _ ^<3 ❤️ ❤️ ❤️ 码字不易&#xff0c;大家的支持就是我坚持…

对BSV区块链网络访问规则NAR通俗易懂的解释

​​发表时间&#xff1a;2024年2月21日 我们可以把BSV区块链网络想象成在公园里举办的一场大型公共足球比赛。虽然这是一场友谊赛&#xff0c;但在比赛前&#xff0c;每个人都要理解并同意基本规则。举例来说&#xff0c;除了守门员之外&#xff0c;任何球员不得用手触球。 在…

JetBrains全家桶激活,分享 WebStorm 2024 激活的方案

大家好&#xff0c;欢迎来到金榜探云手&#xff01; WebStorm公司简介 JetBrains 是一家专注于开发工具的软件公司&#xff0c;总部位于捷克。他们以提供强大的集成开发环境&#xff08;IDE&#xff09;而闻名&#xff0c;如 IntelliJ IDEA、PyCharm、和 WebStorm等。这些工具…

【动手学深度学习】深入浅出深度学习之线性神经网络

目录 &#x1f31e;一、实验目的 &#x1f31e;二、实验准备 &#x1f31e;三、实验内容 &#x1f33c;1. 线性回归 &#x1f33b;1.1 矢量化加速 &#x1f33b;1.2 正态分布与平方损失 &#x1f33c;2. 线性回归的从零开始实现 &#x1f33b;2.1. 生成数据集 &#x…

Linux:文件增删 文件压缩指令

Linux&#xff1a;文件增删 & 文件压缩指令 文件增删touch指令mkdir指令cp指令rm指令rmdir指令 文件压缩zip & unzip 指令tar指令 文件增删 touch指令 功能&#xff1a;touch命令参数可更改文档或目录的日期时间&#xff0c;包括存取时间和更改时间&#xff0c;或者新…

离线数仓(八)【DWD 层开发】

前言 1、DWD 层开发 DWD层设计要点&#xff1a; &#xff08;1&#xff09;DWD层的设计依据是维度建模理论&#xff08;主体是事务型事实表&#xff08;选择业务过程 -> 声明粒度 -> 确定维度 -> 确定事实&#xff09;&#xff0c;另外两种周期型快照事实表和累积型…

第19篇:基本RS锁存器

Q&#xff1a;本期开始我们来设计实现时序逻辑电路&#xff0c;首先来设计由与非门构成的基本RS锁存器。 A&#xff1a;基本RS锁存器工作原理&#xff1a;锁存器的2个输入端均为低电平有效&#xff0c;一般情况下&#xff0c;2个输入端均为1时输出状态维持不变&#xff0c;只有…

JWT认证原理

简介&#xff1a; JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-contained way for securely transmitting information between parties as a JSON object. This information can be verified and trusted because it is digitally …

【信号处理】基于DGGAN的单通道脑电信号增强和情绪检测(tensorflow)

关于 情绪检测&#xff0c;是脑科学研究中的一个常见和热门的方向。在进行情绪检测的分类中&#xff0c;真实数据不足&#xff0c;经常导致情绪检测模型的性能不佳。因此&#xff0c;对数据进行增强&#xff0c;成为了一个提升下游任务的重要的手段。本项目通过DCGAN模型实现脑…

基于STC12C5A60S2系列1T 8051单片机的按键单击长按实现互不干扰增加减少数值应用

基于STC12C5A60S2系列1T 8051单片机的按键单击长按实现互不干扰增加减少数值应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍基于STC12C5A60S2系列1T 8051单片机的…

iscsi网络协议(连接硬件设备)

iscsi概念 iscsi是一种互联网协议&#xff0c;用于将存储设备&#xff08;如硬盘驱动器或磁带驱动器&#xff09;通过网络连接到计算机。它是一种存储区域网络&#xff08;SAN&#xff09;技术&#xff0c;允许服务器通过网络连接到存储设备&#xff0c;就像它们是本地设备一样…

区块链技术与大数据结合的商业模式探索

hello宝子们...我们是艾斯视觉擅长ui设计和前端开发10年经验&#xff01;希望我的分享能帮助到您&#xff01;如需帮助可以评论关注私信我们一起探讨&#xff01;致敬感谢感恩&#xff01; 随着区块链技术和大数据技术的不断发展&#xff0c;两者的结合为企业带来了新的商业模式…

科东软件联手英特尔,用工业AI智能机器人赋能工业升级

AI浪潮已经冲击到各行各业中&#xff0c;它能够帮助人们提高思考和生产效率。在创作中&#xff0c;AI能够帮助人们释放创意&#xff0c;那在工业中&#xff0c;AI能够为产业带来什么呢&#xff1f; 科东软件是国内专注于操作系统开发的企业。当前&#xff0c;科东开发的Intewe…

机器学习——贝叶斯分类器(基础理论+编程)

目录 一、理论 1、初步引入 2、做简化 3、拉普拉斯修正 二、实战 1、计算P(c) 2、计算P(x|c) 3、实战结果 1、数据集展示 2、相关信息打印 一、理论 1、初步引入 在所有相关概率都已知的理想情形下&#xff0c;贝叶斯决策论考虑如何基于这些概率和误判损失来选择最…

Jenkins升级中的小问题

文章目录 使用固定版本安装根据jenkins页面下载war包升级jenkins重启jenkins报错问题解决 K8s部署过程中的一些小问题 ##### Jenkins版本小插曲 ​ 在Jenkins环境进行插件安装时全部清一色飘红&#xff0c;发现是因为Jenkins版本过低导致&#xff0c;报错的位置可以找到更新je…

巨控GRM560工业物联网的升级后的功能

巨控GRM560&#xff1a;工业自动化领域的革命者 标签:#工业自动化 #PLC #远程控制 #OPCUA #MQTT 随着工业4.0时代的到来&#xff0c;智能制造已经成为了发展的大势所趋。在这样的背景下&#xff0c;自动化控制系统的核心——可编程逻辑控制器&#xff08;PLC&#xff09;的作用…