目标检测+车道线识别+追踪

一种方法:

车道线检测-canny边缘检测-霍夫变换

一、什么是霍夫变换

霍夫变换(Hough Transform)是一种在图像处理和计算机视觉中广泛使用的特征检测技术,主要用于识别图像中的几何形状,尤其是直线、圆和椭圆等常见形状。霍夫变换的核心思想是将图像空间中的形状检测问题转化为参数空间中的峰值检测问题,通过在参数空间中投票累积的方式寻找满足特定形状条件的参数组合,从而有效地识别出图像中的几何特征。

以下是霍夫变换的基本工作原理和步骤:

  1. 图像空间到参数空间的映射: 霍夫变换的关键在于它将图像中的点与参数空间中的曲线参数对应起来。对于直线检测,通常使用极坐标形式表示直线:ρ = xcosθ + ysinθ,其中ρ是直线到原点(通常取图像左上角)的距离,θ是直线的斜率角。对于每个图像中的边缘点(x, y),都可以在ρ-θ参数空间中对应一条曲线。同样,对于圆或椭圆的检测,也有对应的参数表示形式。

  2. 投票累积: 对于图像中的每一个边缘点,计算其在参数空间中对应的所有可能参数组合,并在对应的参数值处进行投票(通常是增加计数或累加)。这意味着在参数空间中,每一条可能的直线(或圆、椭圆)都会有一个累积值。这个过程可以形象地理解为,每个边缘点都在参数空间中“投出”一系列票,支持其可能属于的几何形状。

  3. 峰值检测: 在投票累积完成后,参数空间中会出现一些局部峰值,这些峰值对应于图像中具有大量支持点(即边缘点)的几何形状参数。通过设定阈值或寻找全局/局部极大值,可以识别出这些峰值,即找到了图像中最可能存在的几何形状的参数表示。

  4. 形状重构: 根据识别出的参数,可以在原始图像空间中画出相应的直线、圆或椭圆,完成形状的检测。对于直线,可以使用ρ和θ计算出直线的方程;对于圆或椭圆,根据找到的参数可以直接绘制出来。

霍夫变换的优点包括:

  • 抗噪声:由于采用累加投票的方式,少量噪声点不会对最终结果产生显著影响,除非它们恰好在同一条可能的形状参数线上大量聚集。
  • 对形状完整性的要求较低:即使图像中的几何形状部分遮挡或断裂,只要存在足够多的边缘点支持同一参数,霍夫变换仍能有效识别。

其局限性包括:

  • 计算复杂度较高:尤其在处理高分辨率图像或检测复杂形状时,参数空间的维数增加,导致投票累积和峰值检测的计算成本增大。
  • 对参数选择敏感:霍夫变换的效果很大程度上取决于参数空间的分辨率设置,选择不当可能导致真实形状未能有效识别或产生大量假阳性结果。

尽管现代计算机视觉中出现了许多基于深度学习的高效检测方法,霍夫变换因其简单、直观和鲁棒性,在特定应用场合(如工业检测、低复杂度硬件实现等)中仍然具有实用价值。

1. 基本思想

将传统的图像从X,Y轴坐标系变化到参数空间(m,b)或者霍夫空间(hough space)中,通过参数空间(可称为累加空间)计算局部最大值从而确定原始图像中直线或圆的位置。

二、边缘检测算法

边缘检测算法本质上就是一种滤波算法,区别在于滤波器的选择,其与滤波的规则是一致的。为了理解边缘检测算子,我们引入梯度这个概念,梯度在数字图像处理领域可以理解为像素灰度值变化速度,但在数字图像处理中,实际的应用是不需要求导的,只需要进行简单的加减运算。

几种基本的边缘检测滤波器:sobel、prewitt、roberts算子。

问题:直接使用基本的边缘算子求得的边缘图存在很多问题,如噪声污染没有被排除、边缘线太过粗宽等。因此我们介绍一个先进的边缘检测算子——canny算子。

目前流行的canny算法的具体步骤:
1. 高斯滤波

高斯滤波的原理:根据待滤波的像素点及其邻域点的灰度值按照高斯公式生成的参数规则进行加权平均。

2. 计算梯度图像与角度图像

canny中使用的梯度检测算子是使用高斯滤波器进行梯度计算得到的滤波器,得到的结果也类似于sobel算子,即距离中心点越近的像素点权重越大。
角度图像的计算则较为简单,其作用为非极大值抑制的方向提供指导。

3. 对梯度图像进行非极大值抑制

上一步得到的梯度图像存在边缘粗宽、弱边缘干扰等众多问题,现在可以使用非极大值抑制来寻找像素点局部最大值,将非极大值所对应的灰度值置0,极大值点置1,这样可以剔除一大部分非边缘的像素点,因此最后生成的图像应为一副二值图像,边缘理想状态下都为单像素边缘。

4. 使用双阈值进行边缘连接

经过以上三步得到的边缘质量已经很高了,但是还是存在许多伪边缘,因此canny算法采用的算法是双阈值法,具体思路是:选取两个阈值,将小于低阈值的点认为是假边缘置0,将大于高阈值的点认为是强边缘置1,介于中间的像素点需要进一步的检查。

第二种方法:

利用边缘与颜色提取车道线,利用仿射变换转换成鸟瞰图,并利用直方图滑动窗口的算法精确定位车道线,利用最小二乘法进行拟合,实现车道线的检测,并计算车辆偏离车道中心的距离,触发报警装置。

第三种方法:

深度学习车道线检测

第三种方法:

需要实现的yolo+车道线检测

大致思路

目标检测+车道线识别+追踪+测距

数据获取和预处理:
首先,从摄像头或传感器获取图像或视频流,并进行预处理。预处理步骤可能包括图像去噪、色彩校正和尺度调整等。

目标检测:
使用深度学习的目标检测算法YOLO对图像或视频中的目标进行检测和定位。这些算法可以输出每个目标的类别、位置和置信度等信息。

车道线识别:
对于每个图像帧,利用图像处理技术(如边缘检测和霍夫变换)来识别图像中的车道线。这可以提供关于道路结构和车道位置的信息。

追踪:
将目标检测结果与前一帧的跟踪结果进行匹配,以实现目标的连续追踪。使用运动模型和特征匹配等技术来预测和更新目标的位置。这可以提供目标的运动轨迹和速度等信息。

测距:
利用单目视觉或其他深度估计技术,根据目标在图像中的大小、形状和视差等信息,计算目标与相机之间的真实距离。这可以提供关于目标与车辆的相对距离,从而帮助系统做出更准确的决策。

集成和决策:
将目标检测、车道线识别、追踪和测距的结果进行集成,并进行高级决策和规划。例如,根据目标的类别、位置和速度等信息,进行避障、路径规划和车辆控制等决策。

参考文章:目标检测+车道线识别+追踪+测距(代码+部署运行)_车道目标检测和跟踪-CSDN博客


                        
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/775149.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ssm小区车库停车系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 ssm小区车库停车系统是一套完善的信息系统,结合springMVC框架完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和数据库,系统主要采用B/S模…

持续集成与版本控制的相关概念

目录 一、持续集成 1.1 持续集成基本概念 1.1.1 持续集成的含义 1.1.1.1 持续集成流程是依赖产品版本迭代和版本分支而产生的 1.1.1.2 持续集成流程中包含的内容 1.1.2 传统打包模式说明 1.1.2.1 传统打包模式概述 1.1.2.2 传统打包模式问题 1.1.3 持续集成模式 1.1.…

day70 Mybatis使用mapper重构xml文件重新修改商品管理系统

day67 基于mysql数据库jdbcDruidjar包连接的商品管理用户购物系统-CSDN博客 1多表操作 2动态SQL 项目中使用的为商品管理系统的表 一 查询商品信息 编号,名称,单价,库存,类别 1表:商品表,类别表 n对1…

java图书管理系统(简易)

实现的基本功能: 登录时,需要输入姓名,然后选择作为管理者还是普通用户。选择成功后选择想要实现的功能。管理者的目录下方有有五个功能,而普通用户有4个功能,如下图 首先我们要建立Book这个类,里面包含书…

sqlite跨数据库复制表

1.方法1 要将 SQLite 数据库中的一个表复制到另一个数据库,您可以按照以下步骤操作: 备份原始表的SQL定义和数据: 使用 sqlite3 命令行工具或任何SQLite图形界面工具,您可以执行以下SQL命令来导出表的SQL定义和数据&#xff1a…

算法打卡day19

今日任务: 1)235. 二叉搜索树的最近公共祖先 2)701.二叉搜索树中的插入操作 3)450.删除二叉搜索树中的节点 235. 二叉搜索树的最近公共祖先 题目链接:235. 二叉搜索树的最近公共祖先 - 力扣(LeetCode&…

Adobe推出20多个,企业版生成式AI定制、微调服务

3月27日,全球多媒体领导者Adobe在拉斯维加斯召开“Summit 2024”大会,重磅推出了Firefly Services。 Firefly Services提供了20 多个生成式AI和创意API服务,支持企业自有数据对模型进行定制、微调,同时可以与PS、Illustrator、Ex…

华为开源自研AI框架昇思MindSpore应用案例:梯度累加

目录 一、环境准备1.进入ModelArts官网2.使用CodeLab体验Notebook实例 二、案例实现 梯度累加的训练算法,目的是为了解决由于内存不足,导致Batch size过大神经网络无法训练,或者网络模型过大无法加载的OOM(Out Of Memory&#xff…

Learn OpenGL 26 视差贴图

什么是视差贴图 视差贴图(Parallax Mapping)技术和法线贴图差不多,但它有着不同的原则。和法线贴图一样视差贴图能够极大提升表面细节,使之具有深度感。它也是利用了视错觉,然而对深度有着更好的表达,与法线贴图一起用能够产生难…

uniapp写小程序如何实现分包

众所众知小程序上传的过程中对包的大小有限制,正常情况下不允许当个包超过2M,所以需要分包 需要再pages.json这个文件夹中进行配置 "pages": [{"path": "pages/index/index","style": {"navigationBarTit…

备考ICA----Istio实验11---为多个主机配置TLS Istio Ingress Gateway实验

备考ICA----Istio实验11—为多个主机配置TLS Istio Ingress Gateway实验 1. 部署应用 kubectl apply -f istio/samples/helloworld/helloworld.yaml -l servicehelloworld kubectl apply -f istio/samples/helloworld/helloworld.yaml -l versionv12. 证书准备 接上一个实验…

计算机网络:物理层 - 信道复用

计算机网络:物理层 - 信道复用 频分复用时分复用统计时分复用波分复用码分复用 计算机网络中,用户之间通过信道进行通信,但是信道是有限的,想要提高网络的效率,就需要提高信道的利用效率。因此计算机网络中普遍采用信道…

笔记本作为其他主机显示屏(HDMI采集器)

前言: 我打算打笔记本作为显示屏来用,连上工控机,这不是贼方便吗 操作: 一、必需品 HDMI采集器一个 可以去绿联买一个,便宜的就行,我的大概就长这样 win10下载 PotPlayer 软件 下载链接:h…

ClickHouse11-ClickHouse中文件引擎与物化视图的组合拳

全文概览: 什么是物化视图 使用场景 如何实现这个需求 建立一个使用表引擎的表,作为物化视图的目标表确定需要查询的SQL创建物化视图测试 文件引擎其实是一个不常用的特殊表引擎,结合【ClickHouse09-表引擎之文件引擎】一章节的基础介绍 这…

Flutter 常用插件Plugin整理并附带实例

最近有点空闲时间,正好写一篇文章,整理一下我们在Flutter开发中常用的插件Plugin使用并附带上实例。 在日常开发中,整个demo目前应该满足大家所有的开发需求,例如:http请求、列表刷新及加载、列表分组、轮播图、视频播…

AI浪潮席卷游戏业:未来5~10年,游戏或将由AI生成

一年前,因为AI失业的第一批人,在游戏行业出现了。游戏原画、翻译等外包团队开始遭遇砍单,AI绘画工具的发展速度和水平已经几乎可以媲美科班出身、初级经验的人类画师。 一年时间过去,在游戏制作的毛细血管中,越来越多…

SpringBoot3的RabbitMQ消息服务

目录 预备工作和配置 1.发送消息 实现类 控制层 效果 2.收消息 3.异步读取 效果 4.Work queues --工作队列模式 创建队列text2 实体类 效果 5.Subscribe--发布订阅模式 效果 6.Routing--路由模式 效果 7.Topics--通配符模式 效果 异步处理、应用解耦、流量削…

The C programming language (second edition,KR) exercise(CHAPTER 1)

E x c e r c i s e 1 − 2 Excercise\quad 1-2 Excercise1−2:测试结果如图1所示,这里需要注意的是转义字符序列 \ o o o \backslash ooo \ooo和序列 \ x h h \backslash xhh \xhh分别表示3个八进制数和2个十进制数对应的值对应于 A S C I I ASCII ASCII…

Django Cookie和Session

Django Cookie和Session 【一】介绍 【1】起因 HTTP协议四大特性 基于请求响应模式:客户端发送请求,服务端返回响应基于TCP/IP之上:作用于应用层之上的协议无状态:HTTP协议本身不保存客户端信息短链接:1.0默认使用短…

Chronos: 将时间序列作为一种语言进行学习

这是一篇非常有意思的论文,它将时间序列分块并作为语言模型中的一个token来进行学习,并且得到了很好的效果。 Chronos是一个对时间序列数据的概率模型进行预训练的框架,它将这些值标记为与基于transformer的模型(如T5)一起使用。模型将序列的…