1、批量文件重命名神器在工作中,我们常常需要对大量文件进行批量重命名,Python帮你轻松搞定!
import os
def batch_rename(path, prefix='', suffix=''):for i, filename in enumerate(os.listdir(path)):new_name = f"{prefix}{i:03d}{suffix}{os.path.splitext(filename)[1]}"old_file = os.path.join(path, filename)new_file = os.path.join(path, new_name)os.rename(old_file, new_file)# 使用示例:
batch_rename('/path/to/your/directory', 'file_', '.txt')
2、自动发送邮件通知告别手动发送,用Python编写定时发送邮件的自动化脚本。
import smtplib
from email.mime.text import MIMETextdef send_email(to_addr, subject, content):smtp_server = 'smtp.example.com'username = 'your-email@example.com'password = 'your-password'msg = MIMEText(content)msg['Subject'] = subjectmsg['From'] = usernamemsg['To'] = to_addrserver = smtplib.SMTP(smtp_server, 587)server.starttls()server.login(username, password)server.sendmail(username, to_addr, msg.as_string())server.quit()# 使用示例:
send_email('receiver@example.com', '每日报告提醒', '今日报告已生成,请查收。')
3、定时任务自动化执行使用Python调度库,实现定时执行任务的自动化脚本。
import schedule
import timedef job_to_schedule():print("当前时间:", time.ctime(), "任务正在执行...")# 定义每天9点执行任务
schedule.every().day.at("09:00").do(job_to_schedule)while True:schedule.run_pending()time.sleep(1)# 使用示例:
# 运行此脚本后,每天上午9点会自动打印当前时间及提示信息
4、数据库操作自动化简化数据库管理,Python帮你自动化执行CRUD操作。
import sqlite3def create_connection(db_file):conn = Nonetry:conn = sqlite3.connect(db_file)print(f"成功连接到SQLite数据库:{db_file}")except Error as e:print(e)return conndef insert_data(conn, table_name, data_dict):keys = ', '.join(data_dict.keys())values = ', '.join(f"'{v}'" for v in data_dict.values())sql = f"INSERT INTO {table_name} ({keys}) VALUES ({values});"try:cursor = conn.cursor()cursor.execute(sql)conn.commit()print("数据插入成功!")except sqlite3.Error as e:print(e)# 使用示例:
conn = create_connection('my_database.db')
data = {'name': 'John Doe', 'age': 30}
insert_data(conn, 'users', data)# 在适当时候关闭数据库连接
conn.close()
5、网页内容自动化抓取利用BeautifulSoup和requests库,编写Python爬虫获取所需网页信息。
import requests
from bs4 import BeautifulSoupdef fetch_web_content(url):response = requests.get(url)if response.status_code == 200:soup = BeautifulSoup(response.text, 'html.parser')# 示例提取页面标题title = soup.find('title').textreturn titleelse:return "无法获取网页内容"# 使用示例:
url = 'https://example.com'
web_title = fetch_web_content(url)
print("网页标题:", web_title)
6、数据清洗自动化使用Pandas库,实现复杂数据处理和清洗的自动化。
import pandas as pddef clean_data(file_path):df = pd.read_csv(file_path)# 示例:处理缺失值df.fillna('N/A', inplace=True)# 示例:去除重复行df.drop_duplicates(inplace=True)# 示例:转换列类型df['date_column'] = pd.to_datetime(df['date_column'])return df# 使用示例:
cleaned_df = clean_data('data.csv')
print("数据清洗完成,已准备就绪!")
7、图片批量压缩用Python快速压缩大量图片以节省存储空间。
from PIL import Image
import osdef compress_images(dir_path, quality=90):for filename in os.listdir(dir_path):if filename.endswith(".jpg") or filename.endswith(".png"):img = Image.open(os.path.join(dir_path, filename))img.save(os.path.join(dir_path, f'compressed_{filename}'), optimize=True, quality=quality)# 使用示例:
compress_images('/path/to/images', quality=80)
8、文件内容查找替换Python脚本帮助你一键在多个文件中搜索并替换指定内容。
import fileinputdef search_replace_in_files(dir_path, search_text, replace_text):for line in fileinput.input([f"{dir_path}/*"], inplace=True):print(line.replace(search_text, replace_text), end='')# 使用示例:
search_replace_in_files('/path/to/files', 'old_text', 'new_text')
9、日志文件分析自动化通过Python解析日志文件,提取关键信息进行统计分析。
def analyze_log(log_file):with open(log_file, 'r') as f:lines = f.readlines()error_count = 0for line in lines:if "ERROR" in line:error_count += 1print(f"日志文件中包含 {error_count} 条错误记录。")# 使用示例:
analyze_log('application.log')
10、数据可视化自动化利用Matplotlib库,实现数据的自动图表生成。
import matplotlib.pyplot as plt
import pandas as pddef visualize_data(data_file):df = pd.read_csv(data_file)# 示例:绘制柱状图df.plot(kind='bar', x='category', y='value')plt.title('数据分布')plt.xlabel('类别')plt.ylabel('值')plt.show()# 使用示例:
visualize_data('data.csv')
11、邮件附件批量下载通过Python解析邮件,自动化下载所有附件。
import imaplib
import email
from email.header import decode_header
import osdef download_attachments(email_addr, password, imap_server, folder='INBOX'):mail = imaplib.IMAP4_SSL(imap_server)mail.login(email_addr, password)mail.select(folder)result, data = mail.uid('search', None, "ALL")uids = data[0].split()for uid in uids:_, msg_data = mail.uid('fetch', uid, '(RFC822)')raw_email = msg_data[0][1].decode("utf-8")email_message = email.message_from_string(raw_email)for part in email_message.walk():if part.get_content_maintype() == 'multipart':continueif part.get('Content-Disposition') is None:continuefilename = part.get_filename()if bool(filename):file_data = part.get_payload(decode=True)with open(os.path.join('/path/to/download', filename), 'wb') as f:f.write(file_data)mail.close()mail.logout()# 使用示例:
download_attachments('your-email@example.com', 'your-password', 'imap.example.com')
12、定时发送报告自动化根据数据库或文件内容,自动生成并定时发送日报/周报。
import pandas as pd
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipartdef generate_report(source, to_addr, subject):# 假设这里是从数据库或文件中获取数据并生成报告内容report_content = pd.DataFrame({"Data": [1, 2, 3], "Info": ["A", "B", "C"]}).to_html()msg = MIMEMultipart()msg['From'] = 'your-email@example.com'msg['To'] = to_addrmsg['Subject'] = subjectmsg.attach(MIMEText(report_content, 'html'))server = smtplib.SMTP('smtp.example.com', 587)server.starttls()server.login('your-email@example.com', 'your-password')text = msg.as_string()server.sendmail('your-email@example.com', to_addr, text)server.quit()# 使用示例:
generate_report('data.csv', 'receiver@example.com', '每日数据报告')# 结合前面的定时任务脚本,可实现定时发送功能
13、自动化性能测试使用Python的locust
库进行API接口的压力测试。
from locust import HttpUser, task, betweenclass WebsiteUser(HttpUser):wait_time = between(5, 15) # 定义用户操作之间的等待时间@taskdef load_test_api(self):response = self.client.get("/api/data")assert response.status_code == 200 # 验证返回状态码为200@task(3) # 指定该任务在总任务中的执行频率是其他任务的3倍def post_data(self):data = {"key": "value"}response = self.client.post("/api/submit", json=data)assert response.status_code == 201 # 验证数据成功提交后的响应状态码# 运行Locust命令启动性能测试:
# locust -f your_test_script.py --host=http://your-api-url.com
14、自动化部署与回滚脚本使用Fabric库编写SSH远程部署工具,这里以部署Django项目为例:
from fabric import Connectiondef deploy(host_string, user, password, project_path, remote_dir):c = Connection(host=host_string, user=user, connect_kwargs={"password": password})with c.cd(remote_dir):c.run('git pull origin master') # 更新代码c.run('pip install -r requirements.txt') # 安装依赖c.run('python manage.py migrate') # 执行数据库迁移c.run('python manage.py collectstatic --noinput') # 静态文件收集c.run('supervisorctl restart your_project_name') # 重启服务# 使用示例:
deploy(host_string='your-server-ip',user='deploy_user',password='deploy_password',project_path='/path/to/local/project',remote_dir='/path/to/remote/project'
)# 对于回滚操作,可以基于版本控制系统实现或创建备份,在出现问题时恢复上一版本的部署。
往期推荐:
Python 31条 pip 命令全解析
用 Python 轻松生成艺术二维码
Python从COCO数据集中抽取某类别数据用于训练人工智能模型