【No.17】蓝桥杯图论上|最短路问题|Floyd算法|Dijkstra算法|蓝桥公园|蓝桥王国(C++)

图的基本概念

图:

  • 由点(node,或者 vertex)和连接点的边(edge)组成。
  • 图是点和边构成的网。
    树:
  • 特殊的图
  • 树,即连通无环图树的结点从根开始,层层扩展子树,是一种层次关系,这种层次关系,保证了树上不会出现环路。
  • 两点之间的路径:有且仅有一条路径。
  • 最近公共祖先。
图应用背景
  • 地图:路口、道路、过路费
  • 计算机网络:路由协议
  • 人际关系:六度空间理论
图的种类
  1. 无向无权图,边没有权值、没有方向;
  2. 有向无权图,边有方向、无权值;
  3. 加权无向图,边有权值,但没有方向;
  4. 加权有向图;
  5. 有向无环图(Directed Acyclic Graph,DAG)。
图算法的时间分析

图算法的复杂度和边的数量 E、点的数量 V 相关。
O(V+E):几乎是图问题中能达到的最好程度。
O(VlogE)、O(ElogV):很好的算法。
O(V2)、O(E2)或更高:不算是好的算法。

图的存储

能快速访问:图的存储,能让程序很快定位结点 u 和 v 的边(u, v) 。

  • 数组存边:简单、空间使用最少;无法快递定位
  • 邻接矩阵:简单、空间使用最大;定位最快 dis[a][b]
  • 邻接表:空间很少,定位较快
  • 链式前向星:空间更少,定位较快
    注: 存储方式跟题目相匹配,占用空间少定位快也不一定是问题的最优存储方式。
数组存边

优点:简单、最省空间。
缺点:无法定位某条边。
应用:bellman-ford 算法、最小生成树的 kruskal 算法

struct Edge
{int from, to, dis;  //from起始点,to终止点,dis权值
}e[M]; //结构体数组存边cin >> n >> m;for(int i = 1; i <= m; ++ i)cin >> e[i].from >> e[i].to >> e[i].dis;
邻接矩阵

二维数组: graph[NUM][NUM] 
无向图: graph[i][j] = graph[j][i] 
有向图: graph[i][j] != graph[j][i] 
权值: graph[i][j]存结点i到j的边的权值。 例如 graph[1][2]=3,graph[2][1]=5等等。 用 graph[i][j]=INF表示i,j之间无边。

优点:
  • 适合稠密图;
  • 编码非常简短;
  • 对边的存储、查询、更新等操作又快又简单。
缺点:
  • 存储复杂度 O(V^2)太高。V=10000 时,空间 100M。
  • 不能存储重边。
邻接表和链式前向星

邻接表(指针或数组下标)和链式前向星(容器模拟)的思路一样,只是表达方式不同。
应用场景:大稀疏图

优点:
  • 存储效率非常高,存储复杂度O(V+E)
  • 能存储重边
    图片描述
struct edge{int from, to; long long w; //起点,终点,权值。起点from并没有用到,e[i]的i就是fromedge(int a, int b,long long c){from=a; to=b; w=c;}
};
vector<edge>e[N];          //用于存储图

最短路问题

最广为人知的图论问题就是最短路径问题。
简单图的最短路径

  • 树上的路径:任意 2 点之间只有一条路径
  • 所有边长都为 1 的图:用 BFS 搜最短路径,复杂度 O(n+m)
    普通图的最短路径
  • 边长:不一定等于 1,而且可能为负数
  • 算法:FloydDijkstraSPFA 等,各有应用场景,不可互相替代
最短路算法比较
问题边权算法时间复杂度
一个起点,一个终点非负数; 无边权(或边权为 1)Astar(K短路)/ 普通<O((m+n)logn)
双向广搜<O((m+n)logn)
贪心最优搜索<O(m+n)
一个起点到其他所有点无边权(或边权为 1)BFSO(m+n)
非负数Dijkstra(堆优化 优先队列)O((m+n)logn)
允许有负数SPFA<O(mn)
所有点对之间允许有负数Floyd-WarshallO(n^3)

什么算法也不能解决存在负环图的最短路的问题!最多是判断是否存在,或者找到负环。

网站推荐:CSAcademy Graph Editor
图片描述
方便图论的学习。

Floyd 算法

  • 最简单的最短路径算法,代码仅有 4 行
  • 存图:最简单的矩阵存图
  • 易懂,比暴力的搜索更简单易懂。
  • 效率不高,不能用于大图
  • 在某些场景下有自己的优势,难以替代。能做传递闭包问题(离散数学)
for(int k = 1; k <= n; k ++)         //floyd的三重循环for(int i = 1; i <= n; i ++)for(int j = 1; j <= n; j ++)      // k循环在i、j循环外面dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);

Floyd算法多源最短路算法,一次计算能得到图中每一对结点之间(多对多)的最短路径。 
DijkstraBellman-FordSPFA算法:单源最短路径算法(Single source shortest path algorithm),一次计算能得到一个起点到其他所有点(一对多)的最短路径。

Floyd 算法思想:动态规划

Floyd 算法的原理

  • 动态规划:求图上两点 ij 之间的最短距离,按“从小图到全图”的步骤,在逐步扩大图的过程中计算和更新最短路。
  • 定义状态:dp[k][i][j],i、j、k是点的编号,范围 1 ~ n。状态dp[k][i][j]表示在包含 1 ~ k 点的子图上,点对 i、j 之间的最短路。
  • 状态转移方程:从子图 1 ~ k-1 扩展到子图 1 ~ k
  • dp[k][i][j]= min(dp[k−1][i][j], dp[k−1][i][k]+dp[k−1][k][j])

首先是包含 1 ~ k-1 点的子图。 
dp[k−1][i][j]:不包含 k 点子图内的点对 i、j 的最短路;
dp[k−1][i][k]+dp[k−1][k][j]:经过 k 点的新路径的长度,即这条路径从 i 出发,先到 k,再从 k 到终点 j
比较:不经过 k 的最短路径dp[k−1][i][j]和经过 k 的新路径,较小者就是新的dp[k][i][j]

所以 Floyd 的原理就是每次引入一个新的点,用它去更新其他点的最短距离。

k 从 1 逐步扩展到 n:最后得到的dp[n][i][j]是点对 i、j 之间的最短路径长度。
初值dp[0][i][j]:若 i、j 是直连的,就是它们的边长;若不直连,赋值为无穷大。 
i、j 是任意点对:计算结束后得到了所有点对之间的最短路。

dp[k][i][j] = min(dp[k−1][i][j], dp[k−1][i][k]+dp[k−1][k][j]) 
用滚动数组简化:dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j])

for (int k = 1; k <= n; k ++)  //floyd的三重循环for (int i = 1; i <= n; i ++)for (int j = 1; j <= n; j ++)  //k循环在i、j循环的外面dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j]);//比较:不经过k、经过k

特点:

  • 在一次计算后求得所有结点之间的最短距离。
  • 代码极其简单,是最简单的最短路算法。
  • 效率低下,计算复杂度是 O(n^3),只能用于 n < 300 的小规模的图。
  • 存图用邻接矩阵 dp[][] 。因为 Floyd 算法计算的结果是所有点对之间的最短路,本身就需要 n^2 的空间,用矩阵存储最合适。
  • 能判断负圈。
    • 负圈:若图中有权值为负的边,某个经过这个负边的环路,所有边长相加的总长度也是负数,这就是负圈。在这个负圈上每绕一圈,总长度就更小,从而陷入在负圈上兜圈子的死循环。
    • Floyd 算法很容易判断负圈,只要在算法运行过程出现任意一个 dp[i][i] < 0 就说明有负圈。因为 dp[i][i] 是从 i 出发,经过其他中转点绕一圈回到自己的最短路径,如果小于零,就存在负圈。
蓝桥公园

【题目描述】
小明来到了蓝桥公园。已知公园有N个景点,景点和景点之间一共有M条道路。小明有Q个观景计划,每个计划包含一个起点st和一个终点ed,表示他想从st去到ed。但是小明的体力有限,对于每个计划他想走最少的路完成,你可以帮帮他吗?
【输入描述】
输入第一行包含三个正整数N,M,Q。
第2到M+1行每行包含三个正整数u,v,w,表示 u、v之间存在一条距离为w的路。
第M+2到M+Q-1行每行包含两个正整类st,ed,其含义如题所述
1≤N≤400,1≤M≤NX(N-1)/2,Q≤10^3, 1≤u,v,st,ed≤n, 1≤w≤10^9
【输出描述】
输出共Q行,对应输入数据中的查询。若无法从st到达ed则输出-1。

#include <bits/stdc++.h>using namespace std;
const long long INF = 0x3f3f3f3f3f3f3f3fLL; 
//这样定义INF的好处是:INF <= INF+x 防止溢出
const int N= 405;
long long dp[N][N];
int n, m, q;void input(){}
void floyd()
{for(int k = 1; k <= n; k ++)for(int i = 1; i <= n; i ++)for(intj = 1; j <= n; j ++)dp[i][j]= min(dp[i][j], dp[i][k] + dp[k][j]);
}
int main()
{cin >> n>> m >> q;memset(dp, 0x3f, sizeof(dp));     //初始化for(int i = 1; i <= m; i ++){int u, v;long long w;cin >> u >> V >> W;dp[u][v] = dp[v][u] = min(dp[u][v], w);   //防止有重边}floyd();while(q --){int s, t;cin >> s >> t;if(dp[s][t] == INF)cout << "-1" << endl;else if(s == t)cout << "0" << endl;  //如果不这样,dp[il[i]不等于0else cout << dp[s][t] << endl;return 0;
}

Dijkstra 算法

  • Dijkstra:单源最短路径问题。
  • 优点:非常高效而且稳定。
  • 缺点:只能处理不含有负权边的图。
  • 思路:贪心思想+优先队列。
算法思想

Dijkstra 算法算是贪心思想实现的,
首先把起点到所有点的距离存下来找个最短的,然后松弛一次再找出最短的,
所谓的松弛操作就是,遍历一遍看通过刚刚找到的距离最短的点作为中转站会不会更近,如果更近了就更新距离,这样把所有的点找遍之后就存下了起点到其他所有点的最短距离。

为什么是每次都是找最小的?
因为最小边的不会被其它的点松弛,只有可能最小边去松弛别人。
如果存在一个点 K 能够松弛 ab 的话那么一定有 ak 距离加上 kb 的距离小于 ab,已知 ab 最短,所以不存在 ak+kb<ab。

Dijkstra 算法应用了贪心法的思想,即“抄近路走,肯定能找到最短路径”。

算法高效稳定:

  • Dijkstra 的每次迭代,只需要检查上次已经确定最短路径的那些结点的邻居,检查范围很小,算法是高效的;
  • 每次迭代,都能得到至少一个结点的最短路径,算法是稳定的

优先队列实现:

  • 每次往队列中放新数据时,按从小到大的顺序放,采用小顶堆的方式,复杂度是 O(logn),保证最小的数总在最前面;
  • 找最小值,直接取 B 的第一个数,复杂度是 O(1)。
  • 复杂度:用优先队列时,Dijkstra 算法的复杂度是 O(mlogn),是最高效的最短路算法。

维护两个集合:已确定最短路径的结点集合 A、这些结点向外扩散的邻居结点集合 B

  1. 把起点 s 放到 A 中,s-s的距离是0,相当于找到第一条最短路径,用这条最短路去松弛,把 s 所有的邻居放到 B 中。此时,邻居到 s 的距离就是直连距离。
  2. 从 B 中找出距离起点 s 最短的结点 u,放到 A 中。
  3. 把 u 所有的新邻居放到 B 中。显然,u 的每一条边都连接了一个邻居,每个新邻居都要加进去。其中 u 的一个新邻居 v,它到 s 的距离 dis(s, v) 等于 dis(s, u) + dis(u, v)。(要和原始距离dis(s, v)去比较)
  4. 重复(2)、(3),直到 B 为空时,结束。
    ![[Pasted image 20240325172845.png]]
A{1}; B{3, 10};
//会从3开始去扩展,因为3是最短的
A{1, 6}; B{3, 10, 4, 9};
//把6节点放进去,6到5是1,6到4是6,1到5是4,1到4是9
//把2节点放进去,6到2是2,1到2是5
A{1, 6}; B{3, 10, 4, 9, 5};
//排序后,从3开始,已经用6把所有松弛完了,所以3就没有了,从4开始
//到5这个点是4,所以把5加进来,用5这个点做松弛,5不能做松弛,因为到所有点都是正无穷
A{1, 6, 5}; B{10, 9, 5};
//用B里的5去松弛,从2开始,2到4是5,2到3是7,1到4是10,1到3是12
//之前的10被松弛了,1到6到2是5,1到2是10
//接下来用4这个点松弛,1到6到2到4到3是14,比12大,松弛不了
//下来用12去松弛...

Dijkstra 的局限性是边的权值不能为负数:
Dijkstra 基于 BFS,计算过程是从起点 s 逐步往外扩散的过程,每扩散一次就用贪心得到到一个点的最短路。
扩散要求路径越来越长,如果遇到一个负权边,会导致路径变短,使扩散失效。

蓝桥王国 lanqiaoOJ 题号 1122

题目描述
蓝桥王国一共有N 个建筑和M 条单向道路,每条道路都连接着两个建筑,每个建筑都有自己编号,分别为 1∼N。(其中皇宫的编号为 1)国王想让小明回答从皇宫到每个建筑的最短路径是多少,但紧张的小明此时已经无法思考,请你编写程序帮助小明回答国王的考核。
输入描述
输入第一行包含 2 个正整数 N,M。
第 2 到 M+1 行每行包含三个正整数 u,v,w,表示 u→v 之间存在一条距离为 w 的路。
1≤N≤3×105,1≤M≤106,1≤ui​,vi​≤N,0≤wi​≤10^9。
输出描述
输出仅一行,共 N 个数,分别表示从皇宫到编号为 1∼N 建筑的最短距离,两两之间用空格隔开。(如果无法到达则输出 −1)

解题思路:
本题为单源最短路的模板题,直接套模板即可,本题我们采用 Dijkstra。

#include <bits/stdc++.h>
using namespace std;
const long long INF = 0x3f3f3f3f3f3f3f3fLL;
//这样定义INF的好处是: INF <= INF+xconst int N= 3e5+2;
struct edge{int from, to; long long w; //起点,终点,权值。起点from并没有用到,e[i]的i就是fromedge(int a, int b,long long c){from=a; to=b; w=c;}
};
vector<edge>e[N];          //用于存储图
//定义一个排序准则
struct s_node{int id; long long n_dis;   //id:结点;n_dis:这个结点到起点的距离s_node(int b,long long c){id=b; n_dis=c;}bool operator < (const s_node & a) const{ return n_dis > a.n_dis;}
};int n,m;
int pre[N];                                //记录前驱结点,用于生成路径
void print_path(int s, int t) {            //打印从s到t的最短路if(s==t){ printf("%d ", s); return; }  //打印起点print_path(s, pre[t]);                 //先打印前一个点printf("%d ", t);                      //后打印当前点。最后打印的是终点t
}
long long  dis[N];         //记录所有结点到起点的距离
void dijkstra(){int s = 1;             //起点s是1bool done[N]; //done[i]=true表示到结点i的最短路径已经找到for (int i = 1; i <= n; i ++) {dis[i]=INF;   done[i]=false; }    //初始化,所有的距离都初始化为无穷大,都没找到dis[s]=0;                           //起点到自己的距离是0priority_queue <s_node> Q;          //优先队列,存结点信息Q.push(s_node(s, dis[s]));          //起点进队列,用它去松弛//当队列不为空的情况下while (!Q.empty())   {//每次在B中去一个最小值s_node u = Q.top();             //pop出距起点s距离最小的结点uQ.pop();            //取队头,用队头去松弛if(done[u.id])  continue;       //丢弃已经找到最短路径的结点。即集合A中的结点done[u.id]= true;//没有找到的话,就说明没有被用过,把它标记为使用//用它去松弛所有的点for (int i=0; i<e[u.id].size(); i++) {  //检查结点u的所有邻居edge y = e[u.id][i];         //u.id的第i个邻居是y.toif(done[y.to])  continue;    //丢弃已经找到最短路径的邻居结点if (dis[y.to] > y.w + u.n_dis) {dis[y.to] = y.w + u.n_dis;Q.push(s_node(y.to, dis[y.to]));  //扩展新的邻居,放到优先队列中//被松弛的点,再放到B的数列中来pre[y.to]=u.id;  //如果有需要,记录路径}}}// print_path(s,n);          //如果有需要,打印路径: 起点1,终点n
}
int main()
{scanf("%d%d",&n,&m);for (int i=1;i<=n;i++)    e[i].clear();  //清空while (m--) {int u, v, w;  scanf("%d%d%lld", &u, &v, &w);e[u].push_back(edge(u, v, w));//以u为起点,vector里面放了uvw// e[v].push_back(edge(v, u, w));    //本题是单向道路,不需要建反边}dijkstra();for(int i=1;i<=n;i++){if(dis[i]>=INF)  cout<<"-1 ";else   printf("%lld ", dis[i]);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/771152.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

铁道障碍物检测6种YOLOV8

铁道障碍物检测6种&#xff0c;采用YOLOV8训练&#xff0c;得到PT模型&#xff0c;然后转换成ONNX模型&#xff0c;OPENCV调用 铁道障碍物检测6种YOLOV8

开发者的瑞士军刀:DevToys

DevToys&#xff1a; 一站式开发者工具箱&#xff0c;打造高效创意编程体验&#xff0c;让代码生活更加得心应手&#xff01;—— 精选真开源&#xff0c;释放新价值。 概览 不知道大家是否在windows系统中使用过PowerToys&#xff1f;这是微软研发的一项免费实用的系统工具套…

css3鼠标悬停图片特效,图片悬停效果源码

特效介绍 css3鼠标悬停图片特效,图片悬停效果源码&#xff0c;可以在网页上面作为自己的动态加载名片&#xff0c;放到侧边栏或者网站合适的位置即可 动态效果 代码下载 css3鼠标悬停图片特效,图片悬停效果源码

解决mysql问题: this is incompatible with sql_mode=only_full_group_by

今天在部署一趟测试环境的服务&#xff0c;各种配置文件都配好了&#xff0c;启动服务后台报错&#xff0c;解决后记录一下&#xff0c;小伙伴们也可以看看&#xff01; ### Cause: java.sql.SQLSyntaxErrorException: Expression #1 of SELECT list is not in GROUP BY clause…

代码随想录算法训练营第四十六天|139.单词拆分、56. 携带矿石资源(第八期模拟笔试)

139.单词拆分 刷题https://leetcode.cn/problems/word-break/description/文章讲解https://programmercarl.com/0139.%E5%8D%95%E8%AF%8D%E6%8B%86%E5%88%86.html视频讲解https://www.bilibili.com/video/BV1pd4y147Rh/?vd_sourceaf4853e80f89e28094a5fe1e220d9062 题解&…

C语言:给结构体取别名的4种方法

0 前言 在进行嵌入式开发的过程中&#xff0c;我们经常会见到typedef这个关键字&#xff0c;这个关键字的作用是给现有的类型取别名&#xff0c;在实际使用过程中往往是将一个复杂的类型名取一个简单的名字&#xff0c;便于我们的使用。就像我们给很熟的人取外号一样&#xff…

无人驾驶(移动机器人)路径规划之A star(Tie Breaker)算法及其matlab实现

在自动驾驶与移动机器人路径规划时&#xff0c;必定会用到经典的算法A star。下面是我未加入与加入Tie Breaker 的matlab实现效果。可以发现加入Tie Breaker之后效果明显改善。 目录 一、效果比较 1.未加入Tie Breaker&#xff08;黑色为障碍物&#xff0c;菱形绿色为目标点…

python3游戏GUI--开心打地鼠游戏By:PyQt5(附下载地址)

文章目录 一&#xff0e;前言二&#xff0e;游戏预览1.启动2.开始游戏3.游戏结束4.排行榜 三&#xff0e;游戏思路四&#xff0e;总结 一&#xff0e;前言 第一次用PyQt做游戏&#xff0c;有点小紧张呢。本次使用PyQt5制作一款简单的打地鼠游戏&#xff0c;支持基本游戏玩法、…

Bytebase 签约 PropertyGuru,助力东南亚最大地产科技平台跨国多地数据库变更自动化

PropertyGuru 是东南亚最大的在线房地产平台&#xff0c;于2022年于纽交所&#x1f4c8;上市&#xff0c;总部位于新加坡 &#x1f1f8;&#x1f1ec;。公司利用先进的技术&#xff0c;建立了一个连接多方的在线房产平台&#xff0c;一方面为中介代理商、开发商、银行等机构提供…

Kimi是什么?免费Kimi chat介绍

1. Kimi是什么&#xff1f; Kimi是由月之暗面科技有限公司&#xff08;Moonshot AI&#xff09;开发的人工智能助手&#xff0c;专注于提供高质量的对话和信息处理服务。 月之暗面公司创立于2023年3月&#xff0c;创始团队核心成员参与了Google Gemini、Google Bard、盘古NLP、…

文献学习-22-Surgical-VQLA:具有门控视觉语言嵌入的转换器,用于机器人手术中的视觉问题本地化回答

Authors: Long Bai1† , Mobarakol Islam2† , Lalithkumar Seenivasan3 and Hongliang Ren1,3,4∗ , Senior Member, IEEE Source: 2023 IEEE International Conference on Robotics and Automation (ICRA 2023) May 29 - June 2, 2023. London, UK Abstract: 尽管有计算机辅…

Jira 软件缺陷管理 (软件测试)

内容来源&#xff1a;总结黑马课程 1.软件缺陷信息 2.创建缺陷问题 2.1 缺陷模板 2.2 创建缺陷问题模板

CTF题型 Python中pickle反序列化进阶利用例题opache绕过

CTF题型 pickle反序列化进阶&例题&opache绕过 文章目录 CTF题型 pickle反序列化进阶&例题&opache绕过一.基础的pickle反序列化例题1.[HFCTF 2021 Final]easyflask2.[0xgame 2023 Notebook]3.[[HZNUCTF 2023 preliminary\]pickle](https://www.nssctf.cn/proble…

蓝桥杯java---螺旋矩阵

解题思路&#xff1a; int [][] arr new int[n][m];int i 0, j -1, temp 1;while (n * m > 0){for (int p 0; p < m; p)//从左自右arr[i][jj1] temp;n--;if (n * m 0) break;for (int p 0; p < n; p)//从上自下arr[ii1][j] temp;m--;if (n * m 0) break;fo…

分享一个免费查海关(HS)编码的工具

用过海关数据的朋友就会发现&#xff0c;因为现在大部分的海关数据都是国外的进口数据&#xff0c;所以如果要用海关编码去查相关产品的海关交易记录的话&#xff0c;最好的方法就是用当地的海关编码去搜。 各个国家的海关编码是不一样的&#xff0c;比如美国的一般是6-8位&am…

构造函数与析构函数

构造函数 每次创建类的新对象时执行构造函数的名称与类名相同&#xff0c;不带类型&#xff0c;可以有参数也可以没参数构造函数有时给成员函数付初值 析构函数 每次删除所创建的对象时执行析构函数与构造函数类似&#xff0c;前面多个~不带任何参数&#xff0c; #include …

FPGA时钟资源详解(3)——全局时钟资源

FPGA时钟系列文章总览&#xff1a;FPGA原理与结构&#xff08;14&#xff09;——时钟资源https://ztzhang.blog.csdn.net/article/details/132307564 一、概述 全局时钟是 FPGA 中的一种专用互连网络&#xff0c;旨在将时钟信号分配到 FPGA 内各种资源的时钟输入处。这种设计…

免费redis可视化工具windows/mac都可以使用,开源免费

官方地址&#xff1a;RedisInsight | The Best Redis GUI github开源地址&#xff1a;GitHub - RedisInsight/RedisDesktopManager Redis Desktop Manager – Redis可视化管理工具、redis图形化管理工具、redis可视化客户端、redis集群管理工具。 官方下载方式 滚动到页面底…

FPGA时钟资源详解(4)——区域时钟资源

FPGA时钟系列文章总览&#xff1a;FPGA原理与结构&#xff08;14&#xff09;——时钟资源https://ztzhang.blog.csdn.net/article/details/132307564 目录 一、概述 二、Clock-Capable I/O 三、I/O 时钟缓冲器 —— BUFIO 3.1 I/O 时钟缓冲器 3.2 BUFIO原语 四、区域时钟…

High 级别反射型 XSS 攻击演示(附链接)

环境准备 如何搭建 DVWA 靶场保姆级教程&#xff08;附链接&#xff09;https://eclecticism.blog.csdn.net/article/details/135834194?spm1001.2014.3001.5502 测试 打开靶场找到该漏洞页面 先右键检查输入框属性 还是和之前一样的&#xff0c;所以直接输入 HTML 标签提交…