从数据页的角度看 B+ 树

资料来源 : 小林coding

小林官方网站 : 小林coding (xiaolincoding.com)

大家背八股文的时候,都知道 MySQL 里 InnoDB 存储引擎是采用 B+ 树来组织数据的。

这点没错,但是大家知道 B+ 树里的节点里存放的是什么呢?查询数据的过程又是怎样的?

这次,我们从数据页的角度看 B+ 树,看看每个节点长啥样。

InnoDB 是如何存储数据的?

MySQL 支持多种存储引擎,不同的存储引擎,存储数据的方式也是不同的,我们最常使用的是 InnoDB 存储引擎,所以就跟大家图解下InnoDB 是如何存储数据的。

记录是按照行来存储的,但是数据库的读取并不以「行」为单位,否则一次读取(也就是一次 I/O 操作)只能处理一行数据,效率会非常低。

因此,InnoDB 的数据是按「数据页」为单位来读写的,也就是说,当需要读一条记录的时候,并不是将这个记录本身从磁盘读出来,而是以页为单位,将其整体读入内存。

数据库的 I/O 操作的最小单位是页,InnoDB 数据页的默认大小是 16KB,意味着数据库每次读写都是以 16KB 为单位的,一次最少从磁盘中读取 16K 的内容到内存中,一次最少把内存中的 16K 内容刷新到磁盘中。

数据页包括七个部分,结构如下图:

这 7 个部分的作用如下图 : 

在 File Header 中有两个指针,分别指向上一个数据页和下一个数据页,连接起来的页相当于一个双向的链表,如下图所示:

采用链表的结构是让数据页之间不需要是物理上的连续的,而是逻辑上的连续。

数据页的主要作用是存储记录,也就是数据库的数据,所以重点说一下数据页中的 User Records 是怎么组织数据的。

数据页中的记录按照「主键」顺序组成单向链表,单向链表的特点就是插入、删除非常方便,但是检索效率不高,最差的情况下需要遍历链表上的所有节点才能完成检索。

因此,数据页中有一个页目录,起到记录的索引作用,就像我们书那样,针对书中内容的每个章节设立了一个目录,想看某个章节的时候,可以查看目录,快速找到对应的章节的页数,而数据页中的页目录就是为了能快速找到记录。

那 InnoDB 是如何给记录创建页目录的呢?页目录与记录的关系如下图:

页目录创建的过程如下:

页目录创建的过程如下:

  1. 将所有的记录划分成几个组,这些记录包括最小记录和最大记录,但不包括标记为“已删除”的记录;
  2. 每个记录组的最后一条记录就是组内最大的那条记录,并且最后一条记录的头信息中会存储该组一共有多少条记录,作为 n_owned 字段(上图中粉红色字段)
  3. 页目录用来存储每组最后一条记录的地址偏移量,这些地址偏移量会按照先后顺序存储起来,每组的地址偏移量也被称之为槽(slot),每个槽相当于指针指向了不同组的最后一个记录

从图可以看到,页目录就是由多个槽组成的,槽相当于分组记录的索引。然后,因为记录是按照「主键值」从小到大排序的,所以我们通过槽查找记录时,可以使用二分法快速定位要查询的记录在哪个槽(哪个记录分组),定位到槽后,再遍历槽内的所有记录,找到对应的记录,无需从最小记录开始遍历整个页中的记录链表。

以上面那张图举个例子,5 个槽的编号分别为 0,1,2,3,4,我想查找主键为 11 的用户记录:

  • 先二分得出槽中间位是 (0+4)/2=2 ,2号槽里最大的记录为 8。因为 11 > 8,所以需要从 2 号槽后继续搜索记录;
  • 再使用二分搜索出 2 号和 4 槽的中间位是 (2+4)/2= 3,3 号槽里最大的记录为 12。因为 11 < 12,所以主键为 11 的记录在 3 号槽里;
  • 这里有个问题,「槽对应的值都是这个组的主键最大的记录,如何找到组里最小的记录」?比如槽 3 对应最大主键是 12 的记录,那如何找到最小记录 9。解决办法是:通过槽 3 找到 槽 2 对应的记录,也就是主键为 8 的记录。主键为 8 的记录的下一条记录就是槽 3 当中主键最小的 9 记录,然后开始向下搜索 2 次,定位到主键为 11 的记录,取出该条记录的信息即为我们想要查找的内容。

看到第三步的时候,可能有的同学会疑问,如果某个槽内的记录很多,然后因为记录都是单向链表串起来的,那这样在槽内查找某个记录的时间复杂度不就是 O(n) 了吗?

这点不用担心,InnoDB 对每个分组中的记录条数都是有规定的,槽内的记录就只有几条:

  • 第一个分组中的记录只能有 1 条记录;
  • 最后一个分组中的记录条数范围只能在 1-8 条之间;
  • 剩下的分组中记录条数范围只能在 4-8 条之间。

B+ 树是如何进行查询的?

上面我们都是在说一个数据页中的记录检索,因为一个数据页中的记录是有限的,且主键值是有序的,所以通过对所有记录进行分组,然后将组号(槽号)存储到页目录,使其起到索引作用,通过二分查找的方法快速检索到记录在哪个分组,来降低检索的时间复杂度。

但是,当我们需要存储大量的记录时,就需要多个数据页,这时我们就需要考虑如何建立合适的索引,才能方便定位记录所在的页。

为了解决这个问题,InnoDB 采用了 B+ 树作为索引。磁盘的 I/O 操作次数对索引的使用效率至关重要,因此在构造索引的时候,我们更倾向于采用“矮胖”的 B+ 树数据结构,这样所需要进行的磁盘 I/O 次数更少,而且 B+ 树 更适合进行关键字的范围查询。

InnoDB 里的 B+ 树中的每个节点都是一个数据页,结构示意图如下:

通过上图,我们看出 B+ 树的特点:

  • 只有叶子节点(最底层的节点)才存放了数据,非叶子节点(其他上层节)仅用来存放目录项作为索引。
  • 非叶子节点分为不同层次,通过分层来降低每一层的搜索量;
  • 所有节点按照索引键大小排序,构成一个双向链表,便于范围查询;

我们再看看 B+ 树如何实现快速查找主键为 6 的记录,以上图为例子:

  • 从根节点开始,通过二分法快速定位到符合页内范围包含查询值的页,因为查询的主键值为 6,在[1, 7)范围之间,所以到页 30 中查找更详细的目录项;
  • 在非叶子节点(页30)中,继续通过二分法快速定位到符合页内范围包含查询值的页,主键值大于 5,所以就到叶子节点(页16)查找记录;
  • 接着,在叶子节点(页16)中,通过槽查找记录时,使用二分法快速定位要查询的记录在哪个槽(哪个记录分组),定位到槽后,再遍历槽内的所有记录,找到主键为 6 的记录。

可以看到,在定位记录所在哪一个页时,也是通过二分法快速定位到包含该记录的页。定位到该页后,又会在该页内进行二分法快速定位记录所在的分组(槽号),最后在分组内进行遍历查找。

聚簇索引和二级索引

另外,索引又可以分成聚簇索引和非聚簇索引(二级索引),它们区别就在于叶子节点存放的是什么数据:

  • 聚簇索引的叶子节点存放的是实际数据,所有完整的用户记录都存放在聚簇索引的叶子节点;
  • 二级索引的叶子节点存放的是主键值,而不是实际数据。

因为表的数据都是存放在聚簇索引的叶子节点里,所以 InnoDB 存储引擎一定会为表创建一个聚簇索引,且由于数据在物理上只会保存一份,所以聚簇索引只能有一个。

InnoDB 在创建聚簇索引时,会根据不同的场景选择不同的列作为索引:

  • 如果有主键,默认会使用主键作为聚簇索引的索引键;
  • 如果没有主键,就选择第一个不包含 NULL 值的唯一列作为聚簇索引的索引键;
  • 在上面两个都没有的情况下,InnoDB 将自动生成一个隐式自增 id 列作为聚簇索引的索引键;

一张表只能有一个聚簇索引,那为了实现非主键字段的快速搜索,就引出了二级索引(非聚簇索引/辅助索引),它也是利用了 B+ 树的数据结构,但是二级索引的叶子节点存放的是主键值,不是实际数据。

二级索引的 B+ 树如下图,数据部分为主键值:

因此,如果某个查询语句使用了二级索引,但是查询的数据不是主键值,这时在二级索引找到主键值后,需要去聚簇索引中获得数据行,这个过程就叫作「回表」,也就是说要查两个 B+ 树才能查到数据。不过,当查询的数据是主键值时,因为只在二级索引就能查询到,不用再去聚簇索引查,这个过程就叫作「索引覆盖」,也就是只需要查一个 B+ 树就能找到数据。

总结

InnoDB 的数据是按「数据页」为单位来读写的,默认数据页大小为 16 KB。每个数据页之间通过双向链表的形式组织起来,物理上不连续,但是逻辑上连续。

数据页内包含用户记录,每个记录之间用单向链表的方式组织起来,为了加快在数据页内高效查询记录,设计了一个页目录,页目录存储各个槽(分组),且主键值是有序的,于是可以通过二分查找法的方式进行检索从而提高效率。

为了高效查询记录所在的数据页,InnoDB 采用 b+ 树作为索引,每个节点都是一个数据页。

如果叶子节点存储的是实际数据的就是聚簇索引,一个表只能有一个聚簇索引;如果叶子节点存储的不是实际数据,而是主键值则就是二级索引,一个表中可以有多个二级索引。

在使用二级索引进行查找数据时,如果查询的数据能在二级索引找到,那么就是「索引覆盖」操作,如果查询的数据不在二级索引里,就需要先在二级索引找到主键值,需要去聚簇索引中获得数据行,这个过程就叫作「回表」。


这期就到这里 , 下期见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/769235.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spark 集群管理器

Spark 集群管理器 Spark最主要资源管理方式按排名为Hadoop Yarn, Apache Standalone 和Mesos。在单机使用时&#xff0c;Spark还可以采用最基本的local模式。 目前Apache Spark支持三种分布式部署方式&#xff0c;分别是standalone、spark on mesos和 spark on YARN&#xff…

云安全与云计算的关系

云计算又被称为网格计算&#xff0c;是分布式计算的一种&#xff0c;能够将大量的数据计算处理程序通过网络“云”分解成多个小程序&#xff0c;然后将这些小程序的结果反馈给用户。云计算主要就是能够解决任务分发&#xff0c;并进行计算结果的合并。 云安全则是我国企业创造的…

填补市场空白,Apache TsFile 如何重新定义时序数据管理

欢迎全球开发者参与到 Apache TsFile 项目中。 刚刚过去的 2023 年&#xff0c;国产开源技术再次获得国际认可。 2023 年 11 月 15 日&#xff0c;经全球最大的开源软件基金会 ASF 董事会投票决议&#xff0c;时序数据文件格式 TsFile 正式通过&#xff0c;直接晋升为 Apache T…

【C++从练气到飞升】05---运算符重载

&#x1f388;个人主页&#xff1a;库库的里昂 ✨收录专栏&#xff1a;C从练气到飞升 &#x1f389;鸟欲高飞先振翅&#xff0c;人求上进先读书。 目录 ⛳️推荐 一、运算符重载的引用 二、运算符重载 三、赋值运算符重载 1 .赋值运算符重载格式: 2 .赋值运算符只能重载成…

同源策略

浏览器默认两个相同的源之间是可以相互访问资源和操作 DOM 的。两个不同的源之间若想要相互访问资源或者操作DOM&#xff0c;那么会有⼀套基础的安全策略的制约&#xff0c;我们把这称为 同源策略。它的存在可以保护用户隐私信息&#xff0c;防止身份伪造等(读取Cookie) <i…

【智能算法】飞蛾扑火算法(MFO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2015年&#xff0c;Mirjalili等人受到飞蛾受到火焰吸引行为启发&#xff0c;提出了飞蛾算法(Moth-Flame Optimization&#xff0c;MFO)。 2.算法原理 2.1算法思想 MFO基于自然界中飞蛾寻找光源的…

C++测试代码

C测试代码 目录 基于C实现的AOP功能 基于C实现的AOP功能 #include <iostream> #include <string>struct LogHeader {std::string prefix;std::string aspect; };template <typename T> void before(const std::string& msg, const LogHeader& heade…

Qt读取本地系统时间的几种方式

一&#xff0c;使用Windows API函数GetLocalTime&#xff08;精确到毫秒&#xff09; typedef struct _SYSTEMTIME //SYSTEMTIME结构体定义 {   WORD wYear;//年   WORD wMonth;//月   WORD wDayOfWeek;//星期&#xff0c;0为星期日&#xff0c;1为星期一&#xff0c…

2024年华为OD机试真题-考古学家-Java-OD统一考试(C卷)

题目描述: 有一个考古学家发现一个石碑,但是很可惜,发现时其已经断成多段,原地发现n个断口整齐的石碑碎片。为了破解石碑内容,考古学家希望有程序能帮忙计算复原后的石碑文字组合数,你能帮忙吗? 输入描述: 第一行输入n,n表示石碑碎片的个数。 第二行依次输入石碑碎片上…

PCL ICP配准高阶用法——统计每次迭代的配准误差并可视化

目录 一、概述二、代码实现三、可视化代码四、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述 在进行论文写作时,需要做对比实验,来分析改进算法的性能,期间用到了迭代误差分布统计的比较分析,为直…

进一步理解C++里的封装有什么作用

当谈论封装时&#xff0c;我们实际上是在讨论面向对象编程中的一个重要概念&#xff0c;即数据隐藏。封装通过将数据和操作数据的方法捆绑在一起&#xff0c;从而防止外部对象直接访问和修改类的内部数据&#xff0c;以保护数据的完整性和安全性。 用费曼学习法&#xff08;Fe…

leetcode 322.零钱兑换

思路&#xff1a;完全背包。 首先分析问题我们可以知道&#xff0c;这个题的本质就是对于每一个硬币选于不选的问题&#xff0c;也就是所谓的背包问题。而后&#xff0c;这里的每一个硬币都是无限多的&#xff0c;也就是说&#xff0c;这不是01背包或者其他背包问题&#xff0…

Claude 3似乎比GPT-4性能更高,更多的人在尝试使用它

Anthropic 是 OpenAI 的主要竞争对手之一&#xff0c;于 3 月初推出了其最新的大型语言模型 (LLM)&#xff0c;称为 Claude 3。事实证明&#xff0c;Claude 3 的性能优于 OpenAI 的旗舰产品 GPT-4&#xff0c;这让 AI 社区感到惊讶&#xff0c;这标志着 GPT-4 的第一个实例被超…

C++中string容器的元素访问

以string容器为例&#xff0c;容器中元素访问的方式有三种&#xff1a; 1.下标[ ]运算符重载 访问元素 普通对象&#xff1a;char& operator[] (size_t pos) 常对象&#xff1a;const char& operator[] (size_t pos) const string s1("abcdefg"); cout &…

线程的常用方法有哪些?

1、典型回答 线程常用方法有以下这些&#xff1a; start()&#xff1a;启动线程&#xff0c;并调用线程的 run() 方法来执行任务。run()&#xff1a;线程的实际工作方法 (普通方法)&#xff0c;定义线程要执行的任务。sleep(long millis)&#xff1a;暂停当前线程的执行&#…

镜像中更新cuda 配置

1. 进入base 镜像对应的容器&#xff1a; 1.1 docker run -it --gpus all -v /home/huangxiujie:/home/huangxiujie iregistry.baidu-int.com/huangxiujie/tsai_reversing:paddlecloud-v2.3.0-gcc820-cuda11.0_cudnn8-nccl2.12.10 /bin/bash 1.2. docker 挂载本地目录 docker…

Java只有中国人在搞了吗?

还是看你将来想干啥。想干应用架构&#xff0c;与Java狗谈笑风生&#xff0c;沆瀣一气&#xff0c;你就好好写Java&#xff0c;学DDD&#xff0c;看Clean Architecture。你想成为炼丹玄学工程师&#xff0c;年入百万&#xff0c;就选python&#xff0c;专精各种paper。你不在意…

对话李喆:Martech在中国需要转化成以客户需求为驱动的模式

关于SaaS模式在中国的发展&#xff0c;网上出现多种声音。Marteker近期采访了一些行业专家&#xff0c;围绕SaaS模式以及Martech在中国的发展提出独特观点。赛诺贝斯副总裁李喆认为&#xff0c;SaaS可以分为场景化的SaaS、一体化的SaaS和功能化的SaaS&#xff0c;三者都有一定规…

【vue3学习之路(一)】

文章目录 前言一、vue3项目创建1.1环境准备1.1.1 基于 vue-cli 创建&#xff08;脚手架创建&#xff09;1.1.2 基于 vite 创建&#xff08;推荐&#xff09; 二、熟悉流程总结 前言 参考视频&#xff1a;https://www.bilibili.com/video/BV1Za4y1r7KE?p10&spm_id_frompag…

Switch搜不到5g wifi

Switch偶尔可以连上5GHz的SSID&#xff0c;但有时却又搜不到&#xff0c;其实只是频道在作祟。 频道是为了减少干扰 Switch仅有特定频道才能连接 刚刚提到&#xff0c;不论2.4GHz或是5GHz频段都有不同的频道可以选择&#xff0c;即便都是2.4GHz频段选择不同频道才能避免之间的…