算法-最短路径

图的最短路径问题是一个经典的计算机科学和运筹学问题,旨在找到图中两个顶点之间的最短路径。这种问题在多种场景中都有应用,如网络路由、地图导航等。

解决图的最短路径问题有多种算法,其中最著名的包括:
1.迪杰斯特拉算法
(1). 图的要求
适用于权重非负的图。
(2). 实现
该算法的实现通常包括以下步骤:
a. 初始化:将源节点标记为最短路径已经知道.设置其路径距离为0.将其入队列.
b. 循环迭代,直到队列为空
b.1. 出队列,得p
b.2.迭代&更新.
即对从p可达,且最短路径尚未确定节点q
比较,若p的路径距离+Edge<p,q>小于q的路径距离,则更新q的路径距离=p的路径距离+Edge<p,q>.设置p为其路径上一节点.
b.3.从最短路径尚未确定节点中选出路径值最小节点t.将t的最短路径标记为已经知道.t入队列.在无法选出这样的t时,表示剩余节点均不可达.可提前结束迭代.

(3). 实例
在这里插入图片描述
(4). 算法实现

#define MAX 0x7fffffff
class NodeInfo{
public:char m_nName;int32_t m_nPath = MAX;int32_t m_nPreIndex = -1;int32_t m_nTag = -1;
};template<class T>
class Node{
public:T m_nEle;
};template<class EdgeInfo>
class Edge{
public:int32_t m_nWeight = MAX;bool m_bValid = false;
};Node<NodeInfo> stNodes[7];
Edge<int> stEdges[7][7];
void Sort(void* lpBegin, void *lpEnd);
int main(){stNodes[0].m_nEle.m_nName = 'A';stNodes[1].m_nEle.m_nName = 'B';stNodes[2].m_nEle.m_nName = 'C';stNodes[3].m_nEle.m_nName = 'D';stNodes[4].m_nEle.m_nName = 'E';stNodes[5].m_nEle.m_nName = 'F';stNodes[6].m_nEle.m_nName = 'G';stEdges[0][1].m_nWeight = 1;stEdges[0][1].m_bValid = true;stEdges[1][0].m_bValid = true;stEdges[1][0].m_nWeight = 1;stEdges[0][4].m_bValid = true;stEdges[0][4].m_nWeight = 2;stEdges[4][1].m_bValid = true;stEdges[4][1].m_nWeight = 2;stEdges[1][3].m_bValid = true;stEdges[1][3].m_nWeight = 1;stEdges[1][5].m_bValid = true;stEdges[1][5].m_nWeight = 4;stEdges[4][3].m_bValid = true;stEdges[4][3].m_nWeight = 2;stEdges[3][2].m_bValid = true;stEdges[3][2].m_nWeight = 1;stEdges[3][6].m_bValid = true;stEdges[3][6].m_nWeight = 2;stEdges[2][6].m_bValid = true;stEdges[2][6].m_nWeight = 2;int nSourceIndex = 0;stNodes[nSourceIndex].m_nEle.m_nTag = 1;stNodes[nSourceIndex].m_nEle.m_nPath = 0;stNodes[nSourceIndex].m_nEle.m_nPreIndex = -1;int32_t nArrQueue[7];int32_t nFirst = 0;int32_t nEnd = 0;int32_t nNum = 0;nArrQueue[0] = nSourceIndex;nFirst = 0;nEnd = 1;nNum = 1;while(nNum > 0){// 出队列int32_t nIndex;if(nNum = 1){nIndex = nArrQueue[nFirst];nFirst = 0;nEnd = 0;nNum = 0;}else{nIndex = nArrQueue[nFirst];nFirst = (nFirst+1)%7;nNum--;}// 迭代&更新for(int32_t i = 0; i < 7; i++){if(stEdges[nIndex][i].m_bValid && stNodes[i].m_nEle.m_nTag == -1){if(stNodes[i].m_nEle.m_nPath > stNodes[nIndex].m_nEle.m_nPath + stEdges[nIndex][i].m_nWeight){stNodes[i].m_nEle.m_nPath = stNodes[nIndex].m_nEle.m_nPath + stEdges[nIndex][i].m_nWeight;stNodes[i].m_nEle.m_nPreIndex = nIndex;}}}// 入队列// 选择未访问节点中最短距离最小的一个nIndex = -1;int32_t nMin = MAX;for(int32_t i = 0; i < 7; i++){if(stNodes[i].m_nEle.m_nTag == -1 && stNodes[i].m_nEle.m_nPath < nMin){nMin = stNodes[i].m_nEle.m_nPath;nIndex = i;}}if(nIndex == -1){break;// 所有节点均已被访问.或剩余节点全部不可达.}// 选举的节点就是最短路径已知的stNodes[nIndex].m_nEle.m_nTag = 1;if(nNum == 0){nArrQueue[0] = nIndex;nFirst = 0;nEnd = 1;nNum++;}else{nArrQueue[nEnd] = nIndex;nEnd = (nEnd+1)%7;nNum++;}}// testprintf("finish\n");while(true){int32_t nIndex = -1;scanf("%d", &nIndex);getchar();printf("path_%d\n", stNodes[nIndex].m_nEle.m_nPath);printf("%c ", stNodes[nIndex].m_nEle.m_nName);while(nIndex != -1){printf("%c ", stNodes[stNodes[nIndex].m_nEle.m_nPreIndex].m_nEle.m_nName);nIndex = stNodes[nIndex].m_nEle.m_nPreIndex;}printf("\n");}return 0;
}

2.贝尔曼-福特算法(Bellman-Ford Algorithm):
(1). 图的要求
可以处理带有负权重的图,但无法处理包含负权重环的图。
针对权重为负的图,可以让所有边权中加上一个基础量转变为权重非负的,再通过迪杰斯特拉求解.所以,正常没必要用这个.
时间复杂度为O(|V|*|E|)

(2). 算法
贝尔曼-福特算法(Bellman-Ford Algorithm)的实现过程可以分为以下三个阶段:

a. 初始化阶段:
创建一个数组Distant,用于记录从源点s到图中各个顶点的最短路径长度估计值。通常,将源点s到自己的距离Distant[s]初始化为0,而将源点s到其他所有顶点的距离初始化为一个较大的值(如无穷大),表示这些顶点与源点之间的最短路径尚未确定。
b. 松弛操作阶段:
这个阶段需要进行|V|-1次迭代,其中V是图中顶点的数量。在每一次迭代中,遍历图中的所有边(u, v),并检查是否可以通过这条边来更新从源点s到顶点v的最短路径长度估计值。
具体来说,对于每一条边(u, v),如果Distant[u] + w(u, v) < Distant[v],则更新Distant[v]Distant[u] + w(u, v)。这里,w(u, v)是边(u, v)的权重,表示从顶点u到顶点v的距离或成本。
通过不断的松弛操作,Distant数组中的值会逐渐逼近从源点到各个顶点的实际最短路径长度。
c. 负权回路检测阶段:
在完成|V|-1次松弛操作后,再进行一次额外的松弛操作。这次操作的目的是为了检测图中是否存在负权回路(即从某个顶点出发,经过一系列边后回到该顶点,且整个回路的总权重为负)。
如果在额外的松弛操作中,仍然有Distant数组的值被更新,那么就说明图中存在负权回路。因为负权回路的存在会导致最短路径问题无解,因为可以通过不断绕行负权回路来减小路径长度。
如果额外的松弛操作没有更新Distant数组的值,那么算法结束,Distant数组中存储的就是从源点到各个顶点的最短路径长度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/767370.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AWTK T9 输入法实现原理

1. T9 输入法的中文字典数据 网上可以找到 T9 输入法的中文字典数据&#xff0c;但是通常有两个问题&#xff1a; 采用 GPL 协议&#xff0c;不太适合加入 AWTK。 只支持单个汉字的输入&#xff0c;不支持词组的输入。 经过考虑之后&#xff0c;决定自己生成 T9 输入法的中…

Mamba复现与代码解读

文章目录 环境配置demo推理源码解析参数解读Mamba块&#xff08;Mamba Block&#xff09;状态空间模型(SSM)选择性扫描算法&#xff08;selective_scan&#xff09;前向传播&#xff08;forward&#xff09; 均方根归一化 &#xff08;RMSNorm&#xff09;残差块&#xff08;Re…

集成学习 | 集成学习思想:Boosting

目录 一. Boosting思想1. Adaboost 算法1.1 Adaboost算法构建流程1.2 sklearn库参数说明 2. Gradient Boosting 算法2.1 Gradient Boosting算法构建流程2.2 Gradient Boosting算法的回归与分类问题2.2.1 Gradient Boosting回归算法均方差损失函数绝对误差损失函数 2.2.2 Gradie…

【Linux】进程地址空间详解

前言 在我们学习C语言或者C时肯定都听过老师讲过地址的概念而且老师肯定还会讲栈区、堆区等区域的概念&#xff0c;那么这个地址是指的物理内存地址吗&#xff1f;这里这些区域又是如何划分的呢&#xff1f; 我们在使用C语言的malloc或者C的new函数开辟空间时&#xff0c;开辟…

解锁隐私计算力量:一站式掌握SecretFlow安装与双模式部署实践

1.SecretFlow的安装 1.SecretFlow运行要求 SecretFlow作为一个隐私保护的数据分析和机器学习框架&#xff0c;其运行要求可能涉及以下方面&#xff1a; 操作系统&#xff1a; 能够支持Docker运行的环境&#xff0c;因为SecretFlow可能通过Docker容器来管理执行环境的一致性和…

Python Flask 自定义404错误

from flask import Flask, abort, make_response, request, render_templateapp Flask(__name__)# 重定向到百度 app.route(/index, methods["GET", "POST"]) def index():if request.method "GET":return render_template("index.html&q…

推荐一款制造执行系统(MES)国内比较好的实施厂家

什么是MES 制造执行系统&#xff08;MES&#xff09;是一种用于监控、控制和优化制造过程的软件系统。它通过与企业资源计划&#xff08;ERP&#xff09;系统和自动化系统的集成&#xff0c;实现对生产过程的管理和监测&#xff0c;包括生产计划、生产过程和生产数据。 MES可…

BUG未解之谜01-指针引用之谜

在leetcode里面刷题出现的问题&#xff0c;当我在sortedArrayToBST里面给root赋予初始值NULL之后&#xff0c;问题得到解决&#xff01; 理论上root是未初始化的变量&#xff0c;然后我进入insert函数之后&#xff0c;root引用的内容也是未知值&#xff0c;因此无法给原来的二叉…

鸿蒙开发学习【地图位置服务组件】

简介 移动终端设备已经深入人们日常生活的方方面面&#xff0c;如查看所在城市的天气、新闻轶事、出行打车、旅行导航、运动记录。这些习以为常的活动&#xff0c;都离不开定位用户终端设备的位置。 当用户处于这些丰富的使用场景中时&#xff0c;系统的位置定位能力可以提供…

【Python】基础语法(一)

文章目录 1.注释2.关键字与标识符2.1关键字2.2标识符 3.变量4.数据类型4.1数字类型4.2类型转换函数4.3布尔类型 5.输入(input)与输出(print)5.1输入函数(input)5.2输出函数(print) 6.运算符6.1算术运算符6.2比较运算符6.3赋值运算符6.4逻辑运算符6.5运算符优先级 7.字符串7.1字…

JMH微基准测试框架学习笔记

一、简介 JMH&#xff08;Java Microbenchmark Harness&#xff09;是一个用于编写、构建和运行Java微基准测试的框架。它提供了丰富的注解和工具&#xff0c;用于精确控制测试的执行和结果测量&#xff0c;从而帮助我们深入了解代码的性能特性。 二、案例实战 在你的pom文件…

MySQL 排序的那些事儿

书接上回 上次发了几张图&#xff0c;给了几个MySQL Explain的场景&#xff0c;链接在这儿&#xff1a;你是不是MySQL老司机&#xff1f;来看看这些explain结果你能解释吗&#xff1f;MySQL 夺命6连问 我们依次来分析下这6个问题。 在分析之前&#xff0c;我们先来了解一下M…

操作系统面经-用户态和内核态

字节实习生带你面试&#xff0c;后台私信可以获得面试必过大法&#xff01;&#xff01; 根据进程访问资源的特点&#xff0c;我们可以把进程在系统上的运行分为两个级别&#xff1a; 用户态(User Mode) : 用户态运行的进程可以直接读取用户程序的数据&#xff0c;拥有较低的…

【蓝牙协议栈】【BLE】低功耗蓝牙配对绑定过程分析(超详细)

1. 精讲蓝牙协议栈&#xff08;Bluetooth Stack&#xff09;&#xff1a;SPP/A2DP/AVRCP/HFP/PBAP/IAP2/HID/MAP/OPP/PAN/GATTC/GATTS/HOGP等协议理论 2. 欢迎大家关注和订阅&#xff0c;【蓝牙协议栈】和【Android Bluetooth Stack】专栏会持续更新中.....敬请期待&#xff01…

Three.js 中的 OrbitControls 是一个用于控制相机围绕目标旋转以及缩放、平移等操作的控制器。

demo案例 Three.js 中的 OrbitControls 是一个用于控制相机围绕目标旋转以及缩放、平移等操作的控制器。下面是它的详细讲解&#xff1a; 构造函数: OrbitControls(object: Camera, domElement?: HTMLElement)object&#xff1a;THREE.Camera 实例&#xff0c;控制器将围绕…

从零开始学习在VUE3中使用canvas(五):globalCompositeOperation(图形混合)

一、简介 通过设置混合模式来改变图像重叠区域的显示方式。 const ctx canvas.getContext("2d");ctx.globalCompositeOperation "source-over"; 二、属性介绍 source-over 这是默认的复合操作。将源图像绘制到目标图像上&#xff0c;保留目标图像的不透…

IPV6协议之DHCPV6

目录 背景&#xff1a; 一、DHCPV6概述 DHCPv6 Client&#xff1a; DHCPv6 Relay&#xff1a; DHCPv6 Server&#xff1a; 二、DHCPV6工作原理 DHCPV6无状态自动分配 三、DHCP基础配置 服务端 四、DHCPV6地址更新时间&#xff08;DHCPV4租期&#xff09; 五、DHCPV6…

idea 开发serlvet篮球秩序册管理系统idea开发mysql数据库web结构计算机java编程layUI框架开发

一、源码特点 idea开发 java servlet 篮球秩序册管理系统是一套完善的web设计系统mysql数据库 系统采用serlvetdaobean mvc 模式开发&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 servlet 篮…

☆【前后缀】【双指针】Leetcode 42. 接雨水

【前后缀】【双指针】Leetcode 42. 接雨水 解法1 前后缀分解解法2 双指针 ---------------&#x1f388;&#x1f388;42. 接雨水 题目链接&#x1f388;&#x1f388;------------------- 解法1 前后缀分解 维护一个前缀&#xff08;左侧最高&#xff09;后缀&#xff08;右侧…

【Linux系统编程(进程编程)】进程的退出:父进程等待子进程的退出之僵尸进程与孤儿进程

文章目录 一、进程退出1.1、进程正常退出方式1.2、异常退出 二、父进程等待子进程退出&#xff08;一&#xff09;2.1、为什么要等待子进程退出2.2、&#xff08;1&#xff09;父进程等待子进程退出并收集子进程的退出状态如何等待wstatus空wstatus非空 2.3、&#xff08;2&…