图论基础|深度优先dfs、广度优先bfs

dfs 与 bfs 区别

提到深度优先搜索(dfs),就不得不说和广度优先搜索(bfs)有什么区别

先来了解dfs的过程,很多录友可能对dfs(深度优先搜索),bfs(广度优先搜索)分不清。

先给大家说一下两者大概的区别:

  • dfs是可一个方向去搜,不到黄河不回头,直到遇到绝境了,搜不下去了,再换方向(换方向的过程就涉及到了回溯)。
  • bfs是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索方向更像是广度,四面八方的搜索过程。

深度优先dfs

深度优先关键就两点:

  • 搜索方向,是认准一个方向搜,直到碰壁之后再换方向
  • 换方向是撤销原路径,改为节点链接的下一个路径,回溯的过程。

其实深搜和回溯是非常类似的,深搜三部曲如下:

 1.确认递归函数,参数

void dfs(参数)

通常我们递归的时候,我们递归搜索需要了解哪些参数,其实也可以在写递归函数的时候,发现需要什么参数,再去补充就可以。

一般情况,深搜需要 二维数组数组结构保存所有路径,需要一维数组保存单一路径,这种保存结果的数组,我们可以定义一个全局变量,避免让我们的函数参数过多。

vector<vector<int>> result; // 保存符合条件的所有路径
vector<int> path; // 起点到终点的路径
void dfs (图,目前搜索的节点)  

2.确认 终止条件

终止条件很重要,很多同学写dfs的时候,之所以容易死循环,栈溢出等等这些问题,都是因为终止条件没有想清楚。

if (终止条件) {存放结果;return;
}

终止添加不仅是结束本层递归,同时也是我们收获结果的时候。

另外,其实很多dfs写法,没有写终止条件,其实终止条件写在了, 下面dfs递归的逻辑里了,也就是不符合条件,直接不会向下递归。

 3.处理目前搜索节点出发的路径

一般这里就是一个for循环的操作,去遍历 目前搜索节点 所能到的所有节点。

for (选择:本节点所连接的其他节点) {处理节点;dfs(图,选择的节点); // 递归回溯,撤销处理结果
}

797.所有可能的路径

力扣题目链接(opens new window)

给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序)

graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节点 graph[i][j]存在一条有向边)。

提示:

  • n == graph.length
  • 2 <= n <= 15
  • 0 <= graph[i][j] < n
  • graph[i][j] != i(即不存在自环)
  • graph[i] 中的所有元素 互不相同
  • 保证输入为 有向无环图(DAG)

思路:深度优先基础题目

class Solution {
public:vector<vector<int>>result;vector<int>path;void dfs(vector<vector<int>>& graph, int x){if(x==graph.size()-1){//搜索到终点,停止搜索并把可行路径加入结果数组result.push_back(path);return;}for(int i=0; i<graph[x].size(); i++){//遍历节点所能访问的所有其他节点path.push_back(graph[x][i]);dfs(graph, graph[x][i]);//递归遍历path.pop_back();//回溯}}vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {result.clear();path.clear();path.push_back(0);//从0节点出发dfs(graph,0);//从节点0开始搜索return result;}
};

广度优先搜索理论基础

广度优先类似于二叉树的层序遍历

广搜的搜索方式就适合于解决两个点之间的最短路径问题。因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。

上面我们提过,BFS是一圈一圈的搜索过程,但具体是怎么一圈一圈来搜呢。

我们用一个方格地图,假如每次搜索的方向为 上下左右(不包含斜上方),那么给出一个start起始位置,那么BFS就是从四个方向走出第一步。

图一

如果加上一个end终止位置,那么使用BFS的搜索过程如图所示:

图二

我们从图中可以看出,从start起点开始,是一圈一圈,向外搜索,方格编号1为第一步遍历的节点,方格编号2为第二步遍历的节点,第四步的时候我们找到终止点end。

正是因为BFS一圈一圈的遍历方式,所以一旦遇到终止点,那么一定是一条最短路径。

大家应该好奇,这一圈一圈的搜索过程是怎么做到的,是放在什么容器里,才能这样去遍历。

很多网上的资料都是直接说用队列来实现。

其实,我们仅仅需要一个容器,能保存我们要遍历过的元素就可以,那么用队列,还是用栈,甚至用数组,都是可以的

用队列的话,就是保证每一圈都是一个方向去转,例如统一顺时针或者逆时针

因为队列是先进先出,加入元素和弹出元素的顺序是没有改变的。

如果用栈的话,就是第一圈顺时针遍历,第二圈逆时针遍历,第三圈有顺时针遍历

因为栈是先进后出,加入元素和弹出元素的顺序改变了。

那么广搜需要注意 转圈搜索的顺序吗? 不需要!

所以用队列,还是用栈都是可以的,但大家都习惯用队列了,所以下面的讲解用我也用队列来讲,只不过要给大家说清楚,并不是非要用队列,用栈也可以

广搜代码模板,该模板针对的就是,上面的四方格的地图: (详细注释)

int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 表示四个方向
// grid 是地图,也就是一个二维数组
// visited标记访问过的节点,不要重复访问
// x,y 表示开始搜索节点的下标
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {queue<pair<int, int>> que; // 定义队列que.push({x, y}); // 起始节点加入队列visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点while(!que.empty()) { // 开始遍历队列里的元素pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素int curx = cur.first;int cury = cur.second; // 当前节点坐标for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历int nextx = curx + dir[i][0];int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 坐标越界了,直接跳过if (!visited[nextx][nexty]) { // 如果节点没被访问过que.push({nextx, nexty});  // 队列添加该节点为下一轮要遍历的节点visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问}}}}

200. 岛屿数量

题目链接(opens new window)

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 300
  • grid[i][j] 的值为 '0' 或 '1‘

广度优先版本:

class Solution {
public:int dir[4][2]={0,1,1,0,-1,0,0,-1};//定义四个方向void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y){queue<pair<int,int>> que;que.push({x,y});while(!que.empty()){pair<int, int> cur=que.front(); que.pop();//出队,访问int curx=cur.first;int cury= cur.second;visited[curx][cury]=true;//标记该节点访问过for(int i=0;i<4;i++){int nextx=curx+dir[i][0];int nexty=cury+dir[i][1];//判断是否超出边界if(nextx<0||nextx>=grid.size()||nexty<0||nexty>=grid[0].size())continue;if(!visited[nextx][nexty]&&grid[nextx][nexty]=='1'){que.push({nextx,nexty});visited[nextx][nexty]=true;}}}}int numIslands(vector<vector<char>>& grid) {int result=0;int n=grid.size();int m=grid[0].size();vector<vector<bool>>visited(n, vector(m,false));for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(!visited[i][j]&&grid[i][j]=='1'){result++;bfs(grid,visited,i,j );}}}return result;}
};

深度优先版本:

class Solution {
public:int dir[4][2]={0,1,1,0,-1,0,0,-1};//定义四个方向void dfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y){for(int i=0;i<4;i++){int nextx=x+dir[i][0];int nexty=y+dir[i][1];if(nextx<0||nextx>=grid.size()||nexty<0||nexty>=grid[0].size())continue;if(!visited[nextx][nexty]&&grid[nextx][nexty]=='1'){visited[nextx][nexty]=true;dfs(grid,visited,nextx,nexty);}}}int numIslands(vector<vector<char>>& grid) {int result=0;int n=grid.size();int m=grid[0].size();vector<vector<bool>>visited(n, vector(m,false));for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(!visited[i][j]&&grid[i][j]=='1'){result++;dfs(grid,visited,i,j );}}}return result;}
};

   参考:代码随想录

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/767311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙Harmony应用开发—ArkTS-@Observed装饰器和@ObjectLink装饰器:嵌套类对象属性变化

上文所述的装饰器仅能观察到第一层的变化&#xff0c;但是在实际应用开发中&#xff0c;应用会根据开发需要&#xff0c;封装自己的数据模型。对于多层嵌套的情况&#xff0c;比如二维数组&#xff0c;或者数组项class&#xff0c;或者class的属性是class&#xff0c;他们的第二…

MySQL--select count(*)、count(1)、count(列名) 的区别你知道吗?

MySQL select count(*)、count(1)、count(列名) 的区别&#xff1f; 这里我们先给出正确结论&#xff1a; count(*)&#xff0c;包含了所有的列&#xff0c;会计算所有的行数&#xff0c;在统计结果时候&#xff0c;不会忽略列值为空的情况。count(1)&#xff0c;忽略所有的列…

AtCoder Beginner Contest 346

A. Adjacent Product(循环) 题意 给出 N N N个数字 A 1 , A 2 , … , A N A_1, A_2, \ldots, A_N A1​,A2​,…,AN​。定义 B i A i A i 1 ( 1 ≤ i ≤ N − 1 ) B_i A_i \times A_{i 1}(1 \le i \le N - 1) Bi​Ai​Ai1​(1≤i≤N−1)。 请你打印 B 1 , B 2 , … , B …

javase day09笔记

第九天课堂笔记 构造方法★★★★ 完成对属性赋值构造方法的名字必须与类名一致没有返回值类型public 类名&#xff08;【参数】&#xff09;{ }构造方法在创建对象时同步执行没写无参构造&#xff0c;系统默认提供写了构造方法&#xff0c;系统不再提供构造方法:重载 引用数…

牛客NC108 最大正方形【中等 动态规划 Java,Go,PHP】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/0058c4092cec44c2975e38223f10470e 思路 动态规划: 先初始化第一行和第一列。然后其他单元格依赖自己的上边&#xff0c;左边和左上角参考答案Java import java.util.*;public class Solution {/*** 代码中的类…

Naive UI:一个 Vue 3 组件库,比较完整,主题可调,使用 TypeScript,快有点意思。

在当今的前端开发领域&#xff0c;Vue 3已成为中后台应用的首选框架。为了满足开发者的需求&#xff0c;各种组件库如雨后春笋般涌现。其中&#xff0c;Naive UI以其独特的优势&#xff0c;成为了Vue 3开发者的得力助手。本文将深入探讨Naive UI的特性、优势以及如何使用它来提…

docker镜像安装空间不足no space left on device

报错&#xff1a;Error processing tar file(exit status 1): open /usr/local/lib/libmkl_tbb_thread.so.1: no space left on device 原先docker模型保存位置&#xff1a; docker info -f ‘{{ .DockerRootDir}}’ docker 高点版本&#xff0c;这里26.0 解决参考&#xf…

学习次模函数-第1章 引言

许多组合优化问题可以被转换为集合函数的最小化&#xff0c;集合函数是在给定基集合的子集的集合上定义的函数。同样地&#xff0c;它们可以被定义为超立方体的顶点上的函数&#xff0c;即&#xff0c;其中是基集合的基数-它们通常被称为伪布尔函数[27]。在这些集合函数中&…

Linux 创建交换空间

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

鸿蒙Harmony应用开发—ArkTS-应用级变量的状态管理

状态管理模块提供了应用程序的数据存储能力、持久化数据管理能力、UIAbility数据存储能力和应用程序需要的环境状态。 说明&#xff1a; 本模块首批接口从API version 7开始支持&#xff0c;后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 本文中T和S的含义…

“文本魔术师:Python玩转文字格式转换“

Hey小伙伴们&#xff0c;今天我们要一起探索一个超级实用的小技能——Python文字转换器&#xff01;想象一下&#xff0c;你的文字作品能瞬间变换成小说、诗歌、甚至是密码&#xff0c;是不是很酷&#xff1f;跟着我&#xff0c;咱们一步步来学习如何用Python实现这个神奇的功能…

赋能数据收集:从机票网站提取特价优惠的JavaScript技巧

背景介绍 在这个信息时代&#xff0c;数据的收集和分析对于旅游行业至关重要。在竞争激烈的市场中&#xff0c;实时获取最新的机票特价信息能够为旅行者和旅游企业带来巨大的优势。 随着机票价格的频繁波动&#xff0c;以及航空公司和旅行网站不断推出的限时特价优惠&#xff…

每日一题 --- 螺旋矩阵 II[力扣][Go]

螺旋矩阵 II 题目&#xff1a;59. 螺旋矩阵 II - 力扣&#xff08;LeetCode&#xff09; 给你一个正整数 n &#xff0c;生成一个包含 1 到 n2 所有元素&#xff0c;且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1&#xff1a; 输入&#xff1a;n 3 输出…

网络分析(蓝桥杯,acwing,并查集)

题目描述&#xff1a; 小明正在做一个网络实验。 他设置了 n 台电脑&#xff0c;称为节点&#xff0c;用于收发和存储数据。 初始时&#xff0c;所有节点都是独立的&#xff0c;不存在任何连接。 小明可以通过网线将两个节点连接起来&#xff0c;连接后两个节点就可以互相通…

202312 CSP认证 | 树上搜索

树上搜索 这题算是寒假期间自己先写了一遍&#xff0c;当时是20分超时了 当时的存储思路是&#xff0c;存储每一个节点的所有后代节点&#xff0c;然后在找到wsigma最小的节点之后用的集合操作。这导致了一个问题&#xff1a; 更新维护成本很高。每删除一个分支&#xff0c;都…

python 爬虫爬取地理空间高程图GDEMV2 30m 中国地形

一.配置Python 爬虫 环境 from selenium import webdriver import time # from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.by import Byfrom selenium.webdriver.common.keys import Keys # from selenium.webdriver.comm…

Linux命令总结

1.目录切换 #切换到该目录下 usr 目录 cd usr #切换到上一层目录 cd ../ cd .. #切换到系统根目录 cd / #切换到用户主目录 cd ~ #切换到上一个操作所在目录 cd -2.目录操作 #显示目录中的文件和子目录的列表 ls /usr #目录下的所有目录和文件的详细信息 ll /usr #创建新目录…

【鸿蒙系统】 ---OpenHarmony加快本地编译(二)

&#x1f48c; 所属专栏&#xff1a;【鸿蒙系统】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢…

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别 目录 分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别分类效果基本介绍模型描述程序设计参考…

sqlalchemy和moke生成实体类(一)

前言 如果通过java生成实体类&#xff0c;可以通过mybatis或者mybatis-plus的generator。 而sqlalchemy也可以生成实体类&#xff0c;通过sqlalcodegen或者flask-sqlalcodegen。 使用flask-sqlalcodegen生成实体类 建表 建立学生表&#xff0c;如下。 create table stude…