学习次模函数-第1章 引言

许多组合优化问题可以被转换为集合函数的最小化,集合函数是在给定基集合V的子集的集合上定义的函数。同样地,它们可以被定义为超立方体的顶点上的函数,即\left \{ 0,1 \right \}^p,其中p是基集合V的基数-它们通常被称为伪布尔函数[27]。在这些集合函数中,次模函数起着重要的作用,类似于向量空间上的凸函数,因为在实际问题中出现的许多函数都是次模函数或其轻微的修改的,在计算机科学和应用数学的许多领域中有应用,例如机器学习[125,157,117,124],计算机视觉[31,96],运筹学[98,182],电气网络[162]或经济学[203]。由于次模函数可以精确最小化,并且在某些保证下近似地最大化,因此在多项式时间内,它们很容易为它们所应用的所有众多问题带来有效的算法。它们也出现在理论计算机的几个领域中科学,如拟阵理论[189]。

然而,对次模函数的兴趣并不限于离散优化问题。 事实上,次模函数的丰富结构及其通过Lovász扩展与凸分析的联系[135]和各种相关的多面体使它们特别适用于组合优化之外的问题,即作为信号处理和机器学习问题中的正则化器[38,7]。

实际上,许多连续优化问题表现出潜在的离散结构(例如, 基于链、树或更一般的图)和次模函数提供了有效和通用的工具来捕获这样的组合结构。

在这本专著中,次模函数的理论以一种独立的方式呈现,所有结果都是从机器学习中常见的凸分析的第一原理证明的,而不是依赖于组合优化和传统的理论计算机科学概念,如拟阵或流(见,例如, [72]有关这些方法的参考书)。 此外,我们提出的算法是基于传统的凸优化算法,如单纯形法线性规划,二次规划的有效集方法,椭球方法,切割平面,和条件梯度。 这些将详细介绍,特别是在次模函数最小化及其各种连续扩展的背景下。 假设具有良好的凸分析知识(见,例如, [30,28]),并在附录A中对重要概念进行了简短的回顾-更多详细信息,请见,例如, [95,第30、28、185页]。

各章大纲。分为几个章节,总结如下(在目录中,第一次阅读时可以跳过的章节用星星标记):

(1)定义:在第二章中,我们给予了次模函数及其相关多面体的不同定义,特别是基多面体和次模多面体,它们在次模分析中是至关重要的,因为许多算法和模型都可以用这些多面体自然地表示。

(2)Lovász扩展:在第三章中,我们将Lovász扩展定义为从定义在\left \{ 0,1 \right \}^p上的函数到定义在[0,1]^p上的函数的扩展(然后是\mathbb{R}^p),并给予它的主要性质,特别是给出了次模分析中的关键结果:Lovász扩展是凸的当且仅当集函数是次模的;此外,最小化次模集函数F等价于最小化[0,1]^p上的Lovász扩展。这意味着次模函数最小化可以在多项式时间内解决。最后,通过所谓的“贪婪算法”建立了Lovász扩展和次模多面体之间的联系:Lovász扩展是基多面体的支撑函数,并且可以以封闭形式计算。

(3)多面体:第四章将进一步研究伴随多面体,计算线性函数的支撑函数和伴随极大化子,我们还详细讨论了这种多面体的面结构,这在第五章中与Lovász扩展的稀疏诱导性质相关时将很有用。

(4)次模罚函数的凸松弛:虽然次模函数可以直接使用(用于集函数的最小化或最大化),但我们在第5章中展示了如何使用它们来惩罚向量的支撑集或水平集,由此产生的混合组合/连续优化问题可以使用Lovász扩展自然地松弛为凸优化问题。

(5)示例如下:在第6章中,我们介绍了次模函数的经典例子,以及在机器学习中的几个应用,特别是割,集合覆盖,网络流,熵,谱函数和拟阵。

(6)非光滑凸优化:在第七章中,我们回顾了经典的迭代算法,如次梯度法、椭球法、单纯法、割平面法、有效集法和条件梯度法,并特别注意在适用的情况下提供这些算法的原始/对偶解释。

(7)可分离优化-分析:在第八章中,我们考虑了由Lovász扩展w \mapsto f(w)正则化的可分优化问题,即形式为min_{w\in \mathbb{R}^p}{\sum_{k\in V}\psi _k(w_k)+f(w)}的问题,并证明了这如何等价于一系列次模函数极小化问题。这是与次模函数相关的组合优化问题和凸优化问题之间的关键理论联系,这将在后面的章节中使用。

(8)可分离优化-算法:在第9章中,我们提出了两套可分离优化问题的算法。 第一个算法是一个精确的算法,它依赖于一个有效的次模函数最小化算法的可用性,而第二组算法是基于现有的凸优化迭代算法,其中一些来与在线和离线的理论保证。 我们考虑有效集方法(“最小范数”算法)和条件梯度方法。

(9)次模函数最小化:在第10章中,我们介绍了各种次模函数最小化的方法。 我们简要介绍了精确次模函数最小化的组合算法,并专注于更深入地使用特定的凸优化问题,可以迭代求解,以获得近似或精确解次模函数最小化,有时理论保证和近似最优性证书。 我们考虑了次梯度法,椭球法,单纯形算法和解析中心割平面。 我们还展示了第8章和第9章中的可分离优化问题如何用于次模函数最小化。 第12章将对这些方法进行实证比较。

(10)次模块优化问题:在第11章中,我们提出了其他组合优化问题,可以部分解决使用次模分析,如次模函数最大化和次模函数的差异的优化,并将这些问题与非凸优化问题的次模多面体。 虽然这些问题通常不能在多项式时间内解决,但许多算法都具有基于次模性的近似保证。

(11)实验:在第12章中,我们提供了前面描述的优化算法的例子,用于次模函数最小化,以及凸优化问题(可分或不可分)。 所有这些实验的Matlab代码可以在http://www.di.ens.fr/~fbach/submodular/上找到。

在附录A中,我们回顾了凸分析的相关概念(如Fenchel对偶、对偶范数、规范函数和极集),而在附录B中,我们给出了与次模函数相关的几个结果,如保持次模性的运算。

已经有几本关于同一主题的书籍和专著文章,本专著中提供的材料依赖于这些[72,162,126]。 然而,为了以最简单的方式呈现材料,也使用了相关研究论文的思想,并更加强调凸分析和优化。

符号。 我们考虑集合V=\{1,2,3,\cdots,p \},其幂集为2^V,由V2^p个子集组成。 给定一个向量s\in{\mathbb{R}^p}s也表示定义为s(A)=\sum_{k\in A}s_k的模集函数。此外,A\subseteq B意味着AB的子集,可能等于B。 我们表示为\left | A \right |集合A的基数,并且,对于A\subseteq V=\{1,2,3,\cdots,p\}1_A\in \mathbb{R}^p表示集合A的指示向量。 若w\in \mathbb{R}^p,\alpha\in \mathbb{R},则\{w\geqslant \alpha\}表示V=\{1,2,3,\cdots,p\}定义为\{k\in V,w_k\geqslant \alpha\},我们称之为弱(或强)\alpha-超水平集。 类似地,如果v\in\mathbb{R}^p,我们记为\{w\geq v\}=\{k\in V,w_k\geqslant v_k\}

对于q\in{[1,\infty]},我们用\left \| w \right \|_q表示wq-范数,定义为\left \| w \right \|_q=(\sum_{k\in V}{\left | w_k \right |^q})^{1/q},其中q\in{[1,\infty)}\left \| w \right \|_\infty=max_{k\in V}\left | w_k \right |。最后,我们用\mathbb{R}_+表示非负实数集,用\mathbb{R}^*表示非零实数集,用\mathbb{R}_+^*表示严格正实数集。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/767299.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 创建交换空间

🚀 作者主页: 有来技术 🔥 开源项目: youlai-mall 🍃 vue3-element-admin 🍃 youlai-boot 🌺 仓库主页: Gitee 💫 Github 💫 GitCode 💖 欢迎点赞…

鸿蒙Harmony应用开发—ArkTS-应用级变量的状态管理

状态管理模块提供了应用程序的数据存储能力、持久化数据管理能力、UIAbility数据存储能力和应用程序需要的环境状态。 说明: 本模块首批接口从API version 7开始支持,后续版本的新增接口,采用上角标单独标记接口的起始版本。 本文中T和S的含义…

“文本魔术师:Python玩转文字格式转换“

Hey小伙伴们,今天我们要一起探索一个超级实用的小技能——Python文字转换器!想象一下,你的文字作品能瞬间变换成小说、诗歌、甚至是密码,是不是很酷?跟着我,咱们一步步来学习如何用Python实现这个神奇的功能…

赋能数据收集:从机票网站提取特价优惠的JavaScript技巧

背景介绍 在这个信息时代,数据的收集和分析对于旅游行业至关重要。在竞争激烈的市场中,实时获取最新的机票特价信息能够为旅行者和旅游企业带来巨大的优势。 随着机票价格的频繁波动,以及航空公司和旅行网站不断推出的限时特价优惠&#xff…

每日一题 --- 螺旋矩阵 II[力扣][Go]

螺旋矩阵 II 题目:59. 螺旋矩阵 II - 力扣(LeetCode) 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1: 输入:n 3 输出…

网络分析(蓝桥杯,acwing,并查集)

题目描述: 小明正在做一个网络实验。 他设置了 n 台电脑,称为节点,用于收发和存储数据。 初始时,所有节点都是独立的,不存在任何连接。 小明可以通过网线将两个节点连接起来,连接后两个节点就可以互相通…

202312 CSP认证 | 树上搜索

树上搜索 这题算是寒假期间自己先写了一遍,当时是20分超时了 当时的存储思路是,存储每一个节点的所有后代节点,然后在找到wsigma最小的节点之后用的集合操作。这导致了一个问题: 更新维护成本很高。每删除一个分支,都…

python 爬虫爬取地理空间高程图GDEMV2 30m 中国地形

一.配置Python 爬虫 环境 from selenium import webdriver import time # from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.by import Byfrom selenium.webdriver.common.keys import Keys # from selenium.webdriver.comm…

Linux命令总结

1.目录切换 #切换到该目录下 usr 目录 cd usr #切换到上一层目录 cd ../ cd .. #切换到系统根目录 cd / #切换到用户主目录 cd ~ #切换到上一个操作所在目录 cd -2.目录操作 #显示目录中的文件和子目录的列表 ls /usr #目录下的所有目录和文件的详细信息 ll /usr #创建新目录…

【鸿蒙系统】 ---OpenHarmony加快本地编译(二)

💌 所属专栏:【鸿蒙系统】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! 💖 欢…

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别 目录 分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别分类效果基本介绍模型描述程序设计参考…

sqlalchemy和moke生成实体类(一)

前言 如果通过java生成实体类,可以通过mybatis或者mybatis-plus的generator。 而sqlalchemy也可以生成实体类,通过sqlalcodegen或者flask-sqlalcodegen。 使用flask-sqlalcodegen生成实体类 建表 建立学生表,如下。 create table stude…

【Android】系统启动流程分析 —— init 进程启动过程

本文基于 Android 14.0.0_r2 的系统启动流程分析。 一、概述 init 进程属于一个守护进程,准确的说,它是 Linux 系统中用户控制的第一个进程,它的进程号为 1,它的生命周期贯穿整个 Linux 内核运行的始终。Android 中所有其它的进程…

Machine Learning - Logistic Regression

目录 一、Activation Function Why introduce activation functions? There are several commonly used activation functions: 二、Sigmoid: 三、Logistic Regression Model: 四、Implementation of logistic regression: 五、Decis…

unity 多屏幕操作

想了解基础操作请移步:(重点是大佬写的好,这里就不再赘述) Unity 基础 之 使用 Display 简单的实现 多屏幕显示的效果_unity display-CSDN博客 在panel上也可以通过获取 Canvas,来达到切换多屏幕的操作, …

Pear-rec:一键开启多功能捕捉分享,告别繁琐操作!

Pear-rec:一键捕捉每一刻,让每一次分享变得简单高效 - 精选真开源,释放新价值。 概览 Pear-rec是一款采用先进的Electron框架构建,并以ReactJS为前端技术基础的跨平台桌面应用,专注于提供全方位的屏幕捕捉与媒体处理功…

【C++】类与对象(下篇)

在本篇博客中,作者将会讲解类与对象的最后一篇。 一.再谈构造函数 在类与对象(上篇)中,我们讲到了构造函数,其实构造函数就是给每个成员变量进行赋值!!! 仅仅只是赋值而已&#xf…

阿里云2核4G服务器支持多少人在线?2C4G多少钱一年?

2核4G服务器支持多少人在线?阿里云服务器网账号下的2核4G服务器支持20人同时在线访问,然而应用不同、类型不同、程序效率不同实际并发数也不同,2核4G服务器的在线访问人数取决于多个变量因素。 阿里云2核4G服务器多少钱一年?2核4…

地宫取宝dfs

分析: 矩阵里的每一个位置都有标记,要求的问题是:有几种方法能完成这个规定。 那么,我们只需要计算从开始(1,1)到最后(n,m)的深度优先搜索中,有几个是满足要求的即为正确答案。 有个要求是,如果一个格子中…

Docker-镜像仓库

Docker ⛅Docker-Registry🌠分类🌠镜像仓库工作机制🌠常用的镜像仓库🌠镜像仓库命令☃️docker login☃️docker pull☃️docker push☃️docker search☃️docker logout 🌠镜像命令[部分]☃️docker images☃️docke…