【机器学习之---统计】统计学基础概念

every blog every motto: You can do more than you think.
https://blog.csdn.net/weixin_39190382?type=blog

0. 前言

统计学基础

1. 频率派

频率学派(传统学派)认为样本信息来自总体,通过对样本信息的研究可以合理地推断和估计总体信息,并且随着样本的增加,推断结果会更加准确。代表性人物是费希尔(R. A. Fisher, 1890-1962)。

Image

频率学派的核心思想是基于大样本理论,将概率看作频率的极限,以样本观测值的频率为基础进行推断。频率学派注重数据的重复抽样和统计量的性质,比如点估计、置信区间和假设检验等。它强调的是通过样本信息来推断总体参数,并将此过程视为客观的、可重复的。

2. 贝叶斯学派

贝叶斯学派源于英国学者贝叶斯(T. Bayes, 1702-1761)在1763年发表的著名论文《论有关机遇问题的求解》。贝叶斯学派认为任何一个未知量都可以看作是随机的,应该用一个概率分布去描述未知参数,而不是频率派认为的固定值。

image-20240312102456751

贝叶斯学派的核心思想是先验信息与后验信息相结合,通过贝叶斯公式将先验信息与样本数据进行结合,得到后验分布,并以此作为对未知参数的推断。贝叶斯学派强调主观先验信息的引入,因此不同人可能会有不同的先验分布,从而导致不同的推断结果。贝叶斯学派注重个体的主观判断和背景信息,更加灵活和主观。

image-20240312101440834

先验分布: 贝叶斯学派使用先验分布来描述对未知参数的主观先验知识。先验分布可以是任意形式的分布函数,它反映了我们在进行观测之前对参数的先验认识。例如,在研究某产品的平均寿命时,我们可以使用指数分布作为平均寿命的先验分布。

img

后验分布: 贝叶斯学派使用后验分布来描述在观测数据之后对未知参数的更新认识。后验分布是通过将先验分布与观测数据相结合,应用贝叶斯公式计算得到的。例如,在进行文本分类时,我们可以使用贝叶斯定理计算每个类别的后验概率,从而将文本归入最可能的类别中。

img

3. 案例

3.1 频率派

比如我们想了解一个公交站在下一个单位时间内候车的人数情况。

常识告诉我们候车的人数分布应该是符合泊松分布的:

image-20240312105531055

也就是说单位时间内有k个人候车的概率,我们可以通过带入这个公式直接计算出来。

但是,我们面对的问题就是我们虽然知道这个分布公式,但其中有个未知参数λc。

所以,我们需要做的就是在已知分布的情况下如何去估计分布中未知的参数λc。

参数估计的经典方法认为未知参数λc是一个固定的常数,只不过是我们并没有确切的知道这个值。但是我们可以通过抽样得到的数据信息对这个值进行估计。

为此费希尔把高斯的极大似然估计方法做了重新论述,使之用来对参数进行估计。

简要说一下这个方法的大概思路。

我们从车站观察了5次,x1、x2、x3、x4、x5,我们认为在仅有的实验条件下出现的结果应该就是最大概率出现的结果。

所以我们写出似然函数:

image-20240312105625984

然后求使得这个式子达到最大值的λc的值。

由于对数的单调性,通常会取对数再求极值。

具体计算省略掉,得到的值为:

image-20240312105659884

这便是费希尔的经典方法

3.2 贝叶斯派

贝叶斯学派的最基本观点就是:任何一个未知量都可以看作是随机的,应该用一个概率分布去描述未知参数,而不是频率派认为的固定值。

在进行参数估计之前,通过先验信息,我们常常可以得到一个关于未知参数的概率分布,即先验分布,或主观分布。

这在频率派看来是根本不允许的,说好的未知参数是一个固定值,只能通过大量的重复的实验频率来确定,怎么到这里成了一个不确定的值了呢?

一句话而言,频率派认为未知参数是客观的,贝叶斯派认为未知参数可以先从主观角度来考虑。

贝叶斯认为,λc 不应该是一个固定值,而应该是一个随机变量。

我们平时根据经验,可以对做出一个分布的估计。

在这个例子中,我们根据平时候车的经验,感觉λc的值有75%的可能是10,有25%的可能是8,基本上没有其他的可能性了。

用贝叶斯方法的描述就是,关于λc的先验分布为:

image-20240312105939223

如果我们现在去公交车站,观察了一次,X=7,也就是说我们获得了最新的数据信息。

最新的数据信息有助于我们更新对λc的认识,即更新关于λc的先验分布。

应用贝叶斯定理,得到:

image-20240312110105947

image-20240312110124212

image-20240312110134717

同理得,

image-20240312110204470

所以,通过我们获得的信息,我们更新了我们对于先验分布的认识,从而得到了后验分布。

从认知的角度而言,贝叶斯方法是一个动态的过程。

随着我们经验的积累、获取数据的积累,对未知参数的估计不断进行着调整。

所以,贝叶斯方法很快在自然语言处理方面展现出了较好的特性。

4. 小结

频率学派和贝叶斯学派在理论和实践中各有侧重,互为补充。

频率学派的优点是注重大样本下的一致性和渐进性质,在样本足够大的情况下可以得到较为准确的推断结果。它的方法论在经典统计推断中应用广泛,特别适用于重复试验或大规模数据的分析。

贝叶斯学派的优点是能够充分利用先验信息,并将其与样本数据结合,从而得到更准确的推断结果。它的方法论适用于小样本或无法进行重复试验的情境,以及需要考虑个体差异和主观判断的问题。

img

参考

  1. https://mp.weixin.qq.com/s?__biz=MjM5MDE3OTk2Ng==&mid=2657441571&idx=1&sn=8448415b9c3fa355e76918f88dcb9f7b&chksm=bdd940328aaec9249e769779007899e55bd7d2fb7fa4cb2c785896cabb61fd9d36a93a93c6be&scene=27
  2. https://blog.csdn.net/fmqdzh/article/details/120003189
  3. https://blog.csdn.net/zy_zhengyang/article/details/115529564
  4. https://baijiahao.baidu.com/s?id=1779292867410400878&wfr=spider&for=pc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/765819.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker 的八大技术架构(图解)

docker 的八大技术架构 单机架构 概念: 应用服务和数据库服务公用一台服务器 出现背景: 出现在互联网早期,访问量比较小,单机足以满足需求 架构优缺点: 优点:部署简单,成本低 缺点&#xff1…

单片机基础知识

目录 微型计算机基本结构 总线 片内总线和片外总线 数据总线地址总线与控制总线 系统总线和IO总线 微处理器的内部结构 内部寄存器 通用寄存器 指针和变址寄存器 段寄存器 控制寄存器 标志寄存器 存储器的基本结构 存储器的分类 IO接口的功能 外部设备与CPU之间…

点餐小程序php毕设项目

主要技术框架: 主要功能模块: 商品管理 订单管理 用户管理 优惠券管理 商品分类管理 评论管理 轮播图管理 截图 获取源码 https://blog.lusz.top/article?article_id-2

python爬虫之xpath+多进程爬取百度贴吧实战

文章目录 抓取百度贴吧的某一个帖子的评论内容前言先查看贴吧的robots.txt页面结构分析评论者头像,用户抓取评论内容的抓取评论下回复内容的抓取 源码实现贴吧抓取过程源码实现多进程的实现 抓取百度贴吧的某一个帖子的评论内容 前言 本项目实战是用来学习用&#…

操作系统内功篇:硬件结构之CPU是如何执行任务的?

一 CPU是如何读写数据的? 1.1 CPU架构(组成) 当代CPU一般是多核心的,每个核心都有自己的一个L1和L2Cache,L3Cache是一个CPU所有核心共享的,一个CPU只有一个。L1Cache分为数据缓存和指令缓存。 CPU有三层高速缓存的目的就是将Cac…

安装paddle detection心得

一、安装PaddlePaddle conda create -n mypaddle python3.8 conda activate mypaddle python -m pip install paddlepaddle-gpu2.6.0 -i https://mirror.baidu.com/pypi/simple 请确保您的PaddlePaddle安装成功并且版本不低于需求版本。使用以下命令进行验证。 这是CUDA1…

Warning logs 2024-03-23

给旧的笔记本安装ubuntu系统,并实现ssh远程连接 1、下载ubuntu系统 ubuntu下载链接 选择带桌面版本 2、准备U盘 3、使用UltraISO制作启动盘 破解UltraISO软件 输入 注册名:王涛 注册码:7C81-1689-4046-626F 使用UltraISO&#xff0c…

RabbitMQ的使用—实战

RabbitMQ的使用—实战 ​ RabbitMQ是一个开源的消息代理中间件,在分布式系统开发中被广泛应用。它实现了高级消息队列协议(AMQP),提供可靠的消息传递、灵活的路由、消息确认等功能。下面是使用RabbitMQ的基本流程: 安…

雷卯推荐超级省电防反接方案

方案特别适合一端电池,一端充电的防反接,特别节能 低VF肖特基电源防反接 此方案采用3颗低压降SKY,相比只用1颗功耗更低,可以防止元器件过热 (两者正常工作损耗对比公式: 1.采用1颗SS34LVFA:…

如何安装配置Goland并使用固定公网地址SSH远程连接本地服务器

文章目录 1. 安装配置GoLand2. 服务器开启SSH服务3. GoLand本地服务器远程连接测试4. 安装cpolar内网穿透远程访问服务器端4.1 服务器端安装cpolar4.2 创建远程连接公网地址 5. 使用固定TCP地址远程开发 本文主要介绍使用GoLand通过SSH远程连接服务器,并结合cpolar内…

八、C#计数排序算法

简介 计数排序是一种非比较性的排序算法,适用于排序一定范围内的整数。它的基本思想是通过统计每个元素的出现次数,然后根据元素的大小依次输出排序结果。 实现原理 首先找出待排序数组中的最大值max和最小值min。 创建一个长度为max-min1的数组count…

IM系统设计之websocket消息转发

Websocket消息转发 项目地址:gitgithub.com:muyixiaoxi/Link.git 上周面试被面试官问到:“在分布式IM系统中,如何实现多个websocket集群之间的通信”。 我在思考了良久后回答:“不会”。 随着我的回答,我和面试官的…

【机器学习入门 】支持向量机

系列文章目录 第1章 专家系统 第2章 决策树 第3章 神经元和感知机 识别手写数字——感知机 第4章 线性回归 第5章 逻辑斯蒂回归和分类 前言 支持向量机(Support Vector Machine) 于1995年发表,由于其优越的性能和广泛的适用性,成为机器学习的主流技术&…

阿里云有免费服务器吗?有的,附送免费服务器申请流程

阿里云服务器免费试用申请链接入口:aliyunfuwuqi.com/go/free 阿里云个人用户和企业用户均可申请免费试用,最高可以免费使用3个月,阿里云服务器网分享阿里云服务器免费试用申请入口链接及云服务器配置: 阿里云免费服务器领取 阿里…

day10_面向对象之封装丶构造器

封装概述 现实生活中,每一个个体与个体之间是有边界的,每一个团体与团体之间是有边界的,而同一个个体、团体内部的信息是互通的,只是对外有所隐瞒。 面向对象编程语言是对客观世界的模拟,客观世界里每一个事物的内部…

总结: HQL语句

总结: HQL语句 Part1 数据库的操作Part2 数据表的操作1. 创建普通表2. 内外部表3. 内外部表转换 Part1 数据库的操作 查看数据库: show databases; 创建数据库: create database if not exists 数据库名 使用数据库: use 数据库名; 查看数据库详细信息: desc database 数据库名…

Echarts 利用多X轴实现未来15天天气预报

Echarts 利用多X轴实现未来15天天气预报 UI 设计图 Echarts 实现效果 代码实现 代码分解 echarts 图表上下均显示数据 通过设置 grid.top 和 grid.bottom 设置白天和夜间天气展示区域 grid: {top: 36%,bottom: 36%,left: 5%,right: 5%}, 天气图标的设置 由于 axisLabel 的…

【Linux】一文了解【进程优先级相关知识点】&【PRI / NI值】背后的修正原理(13)

前言 大家好吖,欢迎来到 YY 滴Linux系列 ,热烈欢迎! 本章主要内容面向接触过Linux的老铁 主要内容含: 欢迎订阅 YY滴C专栏!更多干货持续更新!以下是传送门! YY的《C》专栏YY的《C11》专栏YY的《…

算法 之 排序算法

🎉欢迎大家观看AUGENSTERN_dc的文章(o゜▽゜)o☆✨✨ 🎉感谢各位读者在百忙之中抽出时间来垂阅我的文章,我会尽我所能向的大家分享我的知识和经验📖 🎉希望我们在一篇篇的文章中能够共同进步!!&…

leetcode(Hot100)——数组篇

1、两数之和 本题使用哈希法&#xff0c;用一个哈希Map保存数组的值以及对应下标&#xff0c;代码如下&#xff1a; class Solution {public int[] twoSum(int[] nums, int target) {HashMap<Integer,Integer> map new HashMap<>();for(int i0; i<nums.length…