七种查找方式(Java)

一、基本查找

也叫做顺序查找

说明:顺序查找适合于存储结构为数组或者链表。

基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。

public class A01_BasicSearchDemo1 {public static void main(String[] args) {//基本查找/顺序查找//核心://从0索引开始挨个往后查找//需求:定义一个方法利用基本查找,查询某个元素是否存在//数据如下:{131, 127, 147, 81, 103, 23, 7, 79}int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};int number = 82;System.out.println(basicSearch(arr, number));}//参数://一:数组//二:要查找的元素//返回值://元素是否存在public static boolean basicSearch(int[] arr, int number){//利用基本查找来查找number在数组中是否存在for (int i = 0; i < arr.length; i++) {if(arr[i] == number){return true;}}return false;}
}

二、二分查找

也叫做折半查找

说明:元素必须是有序的,从小到大,或者从大到小都是可以的。

如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。

  基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:

  • 相等

    说明找到了

  • 要查找的数据比中间节点小

    说明要查找的数字在中间节点左边

  • 要查找的数据比中间节点大

    说明要查找的数字在中间节点右边

    public class A02_BinarySearchDemo1 {public static void main(String[] args) {//二分查找/折半查找//核心://每次排除一半的查找范围//需求:定义一个方法利用二分查找,查询某个元素在数组中的索引//数据如下:{7, 23, 79, 81, 103, 127, 131, 147}int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};System.out.println(binarySearch(arr, 150));}public static int binarySearch(int[] arr, int number){//1.定义两个变量记录要查找的范围int min = 0;int max = arr.length - 1;//2.利用循环不断的去找要查找的数据while(true){if(min > max){return -1;}//3.找到min和max的中间位置int mid = (min + max) / 2;//4.拿着mid指向的元素跟要查找的元素进行比较if(arr[mid] > number){//4.1 number在mid的左边//min不变,max = mid - 1;max = mid - 1;}else if(arr[mid] < number){//4.2 number在mid的右边//max不变,min = mid + 1;min = mid + 1;}else{//4.3 number跟mid指向的元素一样//找到了return mid;}}}
    }

    三、插值查找

    在介绍插值查找之前,先考虑一个问题:

    为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?

    其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?

    二分查找中查找点计算如下:

      mid=(low+high)/2, 即mid=low+1/2*(high-low);

    我们可以将查找的点改进为如下:

      mid=low+(key-a[low])/(a[high]-a[low])*(high-low),

    这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。

      基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。

    细节:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。

    代码跟二分查找类似,只要修改一下mid的计算方式即可。

    四、斐波那契查找

    在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

      黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

      在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….

    (从第三个数开始,后边每一个数都是前两个数的和)。

    然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

  • 基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

    斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可

    public class FeiBoSearchDemo {public static int maxSize = 20;public static void main(String[] args) {int[] arr = {1, 8, 10, 89, 1000, 1234};System.out.println(search(arr, 1234));}public static int[] getFeiBo() {int[] arr = new int[maxSize];arr[0] = 1;arr[1] = 1;for (int i = 2; i < maxSize; i++) {arr[i] = arr[i - 1] + arr[i - 2];}return arr;}public static int search(int[] arr, int key) {int low = 0;int high = arr.length - 1;//表示斐波那契数分割数的下标值int index = 0;int mid = 0;//调用斐波那契数列int[] f = getFeiBo();//获取斐波那契分割数值的下标while (high > (f[index] - 1)) {index++;}//因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐int[] temp = Arrays.copyOf(arr, f[index]);//实际需要使用arr数组的最后一个数来填充不足的部分for (int i = high + 1; i < temp.length; i++) {temp[i] = arr[high];}//使用while循环处理,找到key值while (low <= high) {mid = low + f[index - 1] - 1;if (key < temp[mid]) {//向数组的前面部分进行查找high = mid - 1;/*对k--进行理解1.全部元素=前面的元素+后面的元素2.f[k]=k[k-1]+f[k-2]因为前面有k-1个元素没所以可以继续分为f[k-1]=f[k-2]+f[k-3]即在f[k-1]的前面继续查找k--即下次循环,mid=f[k-1-1]-1*/index--;} else if (key > temp[mid]) {//向数组的后面的部分进行查找low = mid + 1;index -= 2;} else {//找到了//需要确定返回的是哪个下标if (mid <= high) {return mid;} else {return high;}}}return -1;}
    }

    五、分块查找

    当数据表中的数据元素很多时,可以采用分块查找。

    汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找

    分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找

    分块查找的过程:

  1. 需要把数据分成N多小块,块与块之间不能有数据重复的交集。

  2. 给每一块创建对象单独存储到数组当中

  3. 查找数据的时候,先在数组查,当前数据属于哪一块

  4. 再到这一块中顺序查找

    package com.itheima.search;public class A03_BlockSearchDemo {public static void main(String[] args) {/*分块查找核心思想:块内无序,块间有序实现步骤:1.创建数组blockArr存放每一个块对象的信息2.先查找blockArr确定要查找的数据属于哪一块3.再单独遍历这一块数据即可*/int[] arr = {16, 5, 9, 12,21, 18,32, 23, 37, 26, 45, 34,50, 48, 61, 52, 73, 66};//创建三个块的对象Block b1 = new Block(21,0,5);Block b2 = new Block(45,6,11);Block b3 = new Block(73,12,17);//定义数组用来管理三个块的对象(索引表)Block[] blockArr = {b1,b2,b3};//定义一个变量用来记录要查找的元素int number = 37;//调用方法,传递索引表,数组,要查找的元素int index = getIndex(blockArr,arr,number);//打印一下System.out.println(index);}//利用分块查找的原理,查询number的索引private static int getIndex(Block[] blockArr, int[] arr, int number) {//1.确定number是在那一块当中int indexBlock = findIndexBlock(blockArr, number);if(indexBlock == -1){//表示number不在数组当中return -1;}//2.获取这一块的起始索引和结束索引   --- 30// Block b1 = new Block(21,0,5);   ----  0// Block b2 = new Block(45,6,11);  ----  1// Block b3 = new Block(73,12,17); ----  2int startIndex = blockArr[indexBlock].getStartIndex();int endIndex = blockArr[indexBlock].getEndIndex();//3.遍历for (int i = startIndex; i <= endIndex; i++) {if(arr[i] == number){return i;}}return -1;}//定义一个方法,用来确定number在哪一块当中public static int findIndexBlock(Block[] blockArr,int number){ //100//从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的for (int i = 0; i < blockArr.length; i++) {if(number <= blockArr[i].getMax()){return i;}}return -1;}}class Block{private int max;//最大值private int startIndex;//起始索引private int endIndex;//结束索引public Block() {}public Block(int max, int startIndex, int endIndex) {this.max = max;this.startIndex = startIndex;this.endIndex = endIndex;}/*** 获取* @return max*/public int getMax() {return max;}/*** 设置* @param max*/public void setMax(int max) {this.max = max;}/*** 获取* @return startIndex*/public int getStartIndex() {return startIndex;}/*** 设置* @param startIndex*/public void setStartIndex(int startIndex) {this.startIndex = startIndex;}/*** 获取* @return endIndex*/public int getEndIndex() {return endIndex;}/*** 设置* @param endIndex*/public void setEndIndex(int endIndex) {this.endIndex = endIndex;}public String toString() {return "Block{max = " + max + ", startIndex = " + startIndex + ", endIndex = " + endIndex + "}";}
    }

    扩展:可以在Block中加入min,使分块更灵活

六、哈希查找

哈希查找是分块查找的进阶版,适用于数据一边添加一边查找的情况。

一般是数组 + 链表的结合体或者是数组+链表 + 红黑树的结合体

在课程中,为了让大家方便理解,所以规定:

  • 数组的0索引处存储1~100

  • 数组的1索引处存储101~200

  • 数组的2索引处存储201~300

  • 以此类推

但是实际上,我们一般不会采取这种方式,因为这种方式容易导致一块区域添加的元素过多,导致效率偏低。

更多的是先计算出当前数据的哈希值,用哈希值跟数组的长度进行计算,计算出应存入的位置,再挂在数组的后面形成链表,如果挂的元素太多而且数组长度过长,我们也会把链表转化为红黑树,进一步提高效率。

七、树表查询

本知识点涉及到数据结构:树。

建议先看一下后面阿玮讲解的数据结构,再回头理解。

基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。

  二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree),具有下列性质的二叉树:

  1)若任意节点左子树上所有的数据,均小于本身;

  2)若任意节点右子树上所有的数据,均大于本身;

  二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。

不同形态的二叉查找树如下图所示:

基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。

以上资料仅供个人参考借鉴。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/765748.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数字功放VS模拟功放,选择适合你的音频解决方案

数字功放和模拟功放是音频系统中常用的两种功放技术&#xff0c;适用于不同的音频应用&#xff0c;都具有各自的优势和特点。本文将为您详细介绍数字功放和模拟功放的差异&#xff0c;并帮助您找到适合自己的音频解决方案。 1、数字功放是一种利用数字信号处理技术的功放。它将…

Unity:2D

目录 1. 简介 2. 2D Sorting 3. 9-slicing Sprites 3.1 9-slicing and Colliders 4. Sprite Renderer 5. Sprite Creator 6. Sprite Editor 6.1 Slice 6.1 Resize polygons 6.2 Custom Outline 6.3 Custom Physics Shape 6.4 Secondary Textures 6.5 Data Provider…

基础:TCP四次挥手做了什么,为什么要挥手?

1. TCP 四次挥手在做些什么 1. 第一次挥手 &#xff1a; 1&#xff09;挥手作用&#xff1a;主机1发送指令告诉主机2&#xff0c;我没有数据发送给你了。 2&#xff09;数据处理&#xff1a;主机1&#xff08;可以是客户端&#xff0c;也可以是服务端&#xff09;&#xff0c…

常见六大WEB安全问题

一、XSS跨站脚本攻击 1.Cross-Site Scripting&#xff08;跨站脚本攻击&#xff09;简称 XSS&#xff08;因为缩写和 CSS重叠&#xff0c;所以只能叫 XSS&#xff09;&#xff0c;是一种代码注入攻击。攻击者通过在目标网站上注入恶意脚本&#xff0c;使之在用户的浏览器上运行…

力扣---全排列---回溯

思路&#xff1a; 递归做法&#xff0c;一般会有visit数组来判断第 i 位是否被考虑了。我们先考虑第0位&#xff0c;再考虑第1位&#xff0c;再考虑第2位...dfs函数中还是老套路&#xff0c;先判定特殊条件&#xff0c;再从当下的角度&#xff08;决定第 j 位是哪个元素&#x…

Java 枚举(超详细讲解)

Java语言的强大之处在于它提供了多种多样的类库&#xff0c;从而大大提高了程序的编程效率和质量。 一、枚举 事先考虑到某一变量可能的取值&#xff0c;尽可能用自然语言忠表意清楚的单词来表示它的每一个值&#xff0c;用这中思路定义的类型被称为枚举类型。 枚举事由一组固…

获取淘宝商品评论的爬虫技术分享(已封装API,可测试)

item_review-获得淘宝商品评论 公共参数 请求地址: taobao/item_review 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地址中&#xff09;[item_search,it…

零基础机器学习(4)之线性回归的基本原理

文章目录 一、线性回归的基本原理1.相关与回归2.线性回归的原理分析①线性回归的一般公式②线性回归的损失函数③线性回归方程的参数求解方法A.最小二乘法B.梯度下降法 一、线性回归的基本原理 1.相关与回归 相关描述的是变量之间的一种关系。 从统计角度看&#xff0c;变量之…

Nacos介绍和统一配置管理

Nacos&#xff08;全称为 Alibaba Cloud Nacos&#xff0c;或简称为 Nacos&#xff09;是一个开源的分布式服务发现和配置管理系统。它由阿里巴巴集团开发并开源&#xff0c;旨在帮助开发人员简化微服务架构下的服务注册、发现和配置管理。 一、Nacos 提供了以下主要功能&…

Sentry(Android)源码解析

本文字数&#xff1a;16030字 预计阅读时间&#xff1a;40分钟 01 前言 Sentry是一个日志记录、错误上报、性能监控的开源框架&#xff0c;支持众多平台&#xff1a; 其使用方式在本文不进行说明了&#xff0c;大家可参照官方文档&#xff1a;https://docs.sentry.io/platforms…

【No.16】蓝桥杯动态规划下|线性DP装箱问题|计数DP0/1背包的方案数|过河卒|完全背包小明的背包2|最长公共子序列|蓝桥骑士|推荐练习题(C++)

线性DP&#xff0c;0/1背包简化版&#xff0c;装箱问题 【题目描述】有一个箱子容量为V(正整数&#xff0c; 0 ≤ V ≤ 20000 0 \le V \le 20000 0≤V≤20000)&#xff0c;同时有n个物品( 0 < n ≤ 30 0 < n \le 30 0<n≤30)&#xff0c;每个物品有一个体积(正整数)。…

【web前端】CSS语法

CSS语法 1. CSS语法格式 通常情况下语法格式如下: 选择器{属性名:属性值;属性名:属性值;属性名:属性值;... }2. CSS添加方式 2.1 行内样式 直接将样式写在本行的标签内。 <h1><p style"font-size: 48px; color:red;";>行内样式测试</p></…

RHEL9部署Docker环境

华子目录 Docker引擎架构docker引擎架构示意图执行过程示例 RHEL9上安装Docker1.系统要求2.安装yum-utils工具包3.yum安装docker-ce4.配置docker镜像加速docker拉取镜像的过程配置阿里云镜像仓库重新加载守护进程重启Docker服务 5.拉取并运行hello-world镜像6.测试是否安装成功…

SpringCloudAlibaba和SpringCloud的区别

SpringCloudAlibaba实际上对SpringCloud实现拓展组件功能. 1.nacos 分布式配置中心分布式注册中心Eurekaconfig 2.目的是为了推广阿里的产品&#xff0c;如果使用了SpringCloudAlibaba,最好使用alibaba整个体系产品 SpringCloudAlibaba版本对应: 2020.0 分支对应的是 Spring…

ElasticSearch首次启动忘记密码,更改密码(Windows 10)

先启动ElasticSearch 启动方式cmd到lasticsearch-8.12.2\bin目录下输入elasticsearch 启动成功后新开一个窗口输入elasticsearch-reset-password -u elastic

长安链共识算法切换:动态调整,灵活可变

#功能发布 长安链3.0正式版发布了多个重点功能&#xff0c;包括共识算法切换、支持java智能合约引擎、支持后量子密码、web3生态兼容等。我们接下来为大家详细介绍新功能的设计、应用与规划。 随着长安链应用愈加成熟与广泛&#xff0c;一些在生产中很实用的需求浮出水面。长安…

RIPGeo代码理解(五)utils.py( 辅助函数)第一部分

​ 代码链接:RIPGeo代码实现 ├── lib # 包含模型(model)实现文件 │ |── layers.py # 注意力机制的代码。 │ |── model.py # TrustGeo的核心源代码。 │ |── sublayers.py # layer.py的支持文件。 │ |── utils.p…

Linux发布项目(包括前端和后端)到OpenEuler虚拟机上

后端&#xff1a;SpringBoot 前端&#xff1a;VUE3 操作系统&#xff1a;Linux 虚拟机&#xff1a;OpenEuler 发布项目是需要关闭虚拟机上的防火墙 systemctl stop firewalld 一、发布后端项目到虚拟机 1打包后端项目为jar包 2将打包后的jar包放到虚拟机 /opt 目录下 3 运行项…

算法体系-12 第 十二 二叉树的基本算法 下

一 实现二叉树的按层遍历 1.1 描述 1&#xff09;其实就是宽度优先遍历&#xff0c;用队列 2&#xff09;可以通过设置flag变量的方式&#xff0c;来发现某一层的结束&#xff08;看题目&#xff09;看下边的第四题解答 1.2 代码 public class Code01_LevelTraversalBT {publ…

Elsevier(爱思唯尔)如何查询特刊special issue

1. 以Knowledge-Based Systems为例 网站&#xff1a;https://www.sciencedirect.com/journal/knowledge-based-systems 2.具体位置