yolov8 模型部署--TensorRT部署-c++服务化部署

写目录

  • yolov8 模型部署--TensorRT部署
    • 1、模型导出为onnx格式
    • 2、模型onnx格式转engine 部署

yolov8 模型部署–TensorRT部署

1、模型导出为onnx格式

  • 如果要用TensorRT部署YOLOv8,需要先使用下面的命令将模型导出为onnx格式:

    yolo export model=yolov8n.pt format=onnx 
    
  • YOLOv8的3个检测头一共有80x80+40x40+20x20=8400个输出单元格,每个单元格包含x,y,w,h这4项再加80个类别的置信度总共84项内容,所以通过上面命令导出的onnx模型的输出维度为1x84x8400

  • 模型输出维度
    在这里插入图片描述

  • 这样的通道排列顺序有个问题,那就是后处理的时候会造成内存访问不连续。

  • 为了解决这个问题,我们可以修改一下代码,具体做法是把ultralytics/nn/modules.py文件中的代码做如下修改,交换一下张量y的通道顺序:

    def forward(self, x):shape = x[0].shape  # BCHWfor i in range(self.nl):x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)if self.training:return xelif self.dynamic or self.shape != shape:self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))self.shape = shapex_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # avoid TF FlexSplitV opsbox = x_cat[:, :self.reg_max * 4]cls = x_cat[:, self.reg_max * 4:]else:box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.stridesy = torch.cat((dbox, cls.sigmoid()), 1)# 修改模型输出维度y=y.permute(0,2,1)return y if self.export else (y, x)

在这里插入图片描述

  • 这样修改后再执行上面的模型导出命令,模型的输出维度变为1x8400x84
    在这里插入图片描述

2、模型onnx格式转engine 部署

  • 配置好TensorRTNVIDIA环境
  • 使用trtexec 转换格式
    trtexec --onnx=coco/best.onnx --saveEngine=coco/best.onnx.engine --workspace=32 
    
  • 模型部署部分代码-c++
    #ifndef MyController_hpp
    #define MyController_hpp#include <ctime>
    #include <chrono>
    #include <sstream>
    #include <iomanip>#include <iostream>
    #include <numeric>
    #include <vector>#include "oatpp/web/server/api/ApiController.hpp"
    #include "oatpp/core/macro/codegen.hpp"
    #include "oatpp/core/macro/component.hpp"#include "opencv2/opencv.hpp"
    #include "../dto/DTOs.hpp" // 定义数据格式,用于在不同组件之间传输数据#include "../yoloApp/simple_yolo.hpp"
    #include "../byteTrackApp/logging.h"
    #include "../byteTrackApp/BYTETracker.h"// high performance
    #include "../yoloHighPer/cpm.hpp"
    #include "../yoloHighPer/infer.hpp"
    #include "../yoloHighPer/yolo.hpp"#	include <dirent.h>
    #	include <sys/types.h>
    #	include <sys/stat.h>
    #	include <unistd.h>
    # include <stdarg.h>using namespace std;
    using namespace cv;#include OATPP_CODEGEN_BEGIN(ApiController) //<-- Begin Codegenstatic bool exists(const string& path){#ifdef _WIN32return ::PathFileExistsA(path.c_str());
    #elsereturn access(path.c_str(), R_OK) == 0;
    #endif
    }static std::vector<std::string> cocolabels = {"car", "excavator", "loader", "dumpTruck", "person"
    };class InferInstance{
    public:InferInstance(std::string onnx_model_path, std::string trt_model_path){onnx_model = onnx_model_path;trt_model = trt_model_path;startup();}bool startup(){// if(!exists(trt_model)){// 	SimpleYolo::compile(// 		SimpleYolo::Mode::FP32,                 // FP32、FP16、INT8// 		SimpleYolo::Type::V8, // 		1,            // max batch size// 		onnx_model,                  // source // 		trt_model,                   // save to// 		1 << 30,// 		"inference"// 	);// }infer_ = yolo::load(trt_model, yolo::Type::V8);return infer_ != nullptr;}int inference(const Mat& image_input, yolo::BoxArray& boxarray){if(infer_ == nullptr){// INFOE("Not Initialize.");return 1;}if(image_input.empty()){// INFOE("Image is empty.");return 1;}boxarray = infer_->forward(cvimg(image_input));return 0;}private:yolo::Image cvimg(const cv::Mat &image) { return yolo::Image(image.data, image.cols, image.rows);}private:std::string onnx_model = "best.onnx";std::string trt_model = "best.onnx.engine";shared_ptr<yolo::Infer> infer_;
    };///
    std::string onnx_model = "coco/best.onnx";
    std::string engine_label = "coco/best.onnx.engine";
    std::unique_ptr<InferInstance> infer_instance1(new InferInstance(onnx_model, engine_label));int frame_rate = 10;
    int track_buffer = 30;
    std::unique_ptr<BYTETracker> tracker_instance1(new BYTETracker(frame_rate, track_buffer));////*** 建议使用 Api 控制器,而不是使用裸 HttpRequestHandler 为每个新端点创建新的请求处理程序。* API 控制器通过为您生成样板代码,使添加新端点的过程变得更加容易。 它还有助于组织您的端点,* 将它们分组到不同的 API 控制器中。*//*** Sample Api Controller.*/
    class MyController : public oatpp::web::server::api::ApiController {
    protected:/*** Constructor with object mapper.* @param objectMapper - default object mapper used to serialize/deserialize DTOs.*/MyController(const std::shared_ptr<ObjectMapper>& objectMapper): oatpp::web::server::api::ApiController(objectMapper){}public:  static std::shared_ptr<MyController> createShared(OATPP_COMPONENT(std::shared_ptr<ObjectMapper>, objectMapper)){return std::shared_ptr<MyController>(new MyController(objectMapper));}// TODO Insert Your endpoints here !!!/--data--// 多目标追踪ENDPOINT_ASYNC("POST", "/car1", tracker1){ENDPOINT_ASYNC_INIT(tracker1)Action act() override {return request->readBodyToStringAsync().callbackTo(&tracker1::returnResponse);}Action returnResponse(const oatpp::String& body_){auto response = tracker_inference(*infer_instance1, *tracker_instance1, body_, controller);return _return(response);}};//public:// 多目标追踪static std::shared_ptr<OutgoingResponse> tracker_inference(InferInstance& infer_, BYTETracker& track_infer, std::string body_, auto* controller){auto base64Image = base64_decode(body_);if(base64Image.empty()){return controller->createResponse(Status::CODE_400, "The image is empty!");}std::vector<char> base64_img(base64Image.begin(), base64Image.end());cv::Mat image = cv::imdecode(base64_img, 1);// 获取程序开始时间点auto start_time = std::chrono::high_resolution_clock::now();// 推理yolo::BoxArray boxarray;CV_Assert(0 == infer_.inference(image, boxarray));// 获取程序结束时间点auto end_time = std::chrono::high_resolution_clock::now();// 计算运行时间auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end_time - start_time);// 打印运行时间(以微秒为单位)// std::cout << "程序运行时间: " << duration.count() << " 毫秒" << std::endl;// 结果处理vector<Objects> objects;objects.resize(boxarray.size());int index = 0;for(auto& box : boxarray) {objects[index].rect.x = box.left;;objects[index].rect.y = box.top;objects[index].rect.width = box.right - box.left;objects[index].rect.height = box.bottom - box.top;objects[index].prob = box.confidence;objects[index].label = box.class_label;index++;std::cout << "left: " << box.left << ", top: " << box.top<< ", right: " << box.right << ", bottom: " << box.bottom<< ", confidence: " << box.confidence << ", class_label: " << box.class_label << std::endl;}auto yoloDto = TrackYoloDto::createShared();auto boxList = TrackBoxList::createShared();std::vector<STrack> output_stracks = track_infer.update(objects);for (int i = 0; i < output_stracks.size(); i++){auto trackBoxDto = TrackerBboxes::createShared();vector<float> tlwh = output_stracks[i].tlwh; // 方框的位置trackBoxDto->class_id = cocolabels[output_stracks[i].class_id];trackBoxDto->track_id = output_stracks[i].track_id;trackBoxDto->x        = tlwh[0];trackBoxDto->y        = tlwh[1];trackBoxDto->width    = tlwh[2];trackBoxDto->height   = tlwh[3];boxList->push_back(trackBoxDto);}output_stracks.clear();yoloDto->data = boxList;yoloDto->status = "successful";yoloDto->time = currentDateTime();return controller->createDtoResponse(Status::CODE_200, yoloDto);}static std::string currentDateTime(){auto now = std::chrono::system_clock::now();auto now_c = std::chrono::system_clock::to_time_t(now);auto now_ms = std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch()) % 1000;std::stringstream ss;ss << std::put_time(std::localtime(&now_c), "%Y-%m-%d %H:%M:%S") << '.' << std::setfill('0') << std::setw(3) << now_ms.count();return ss.str();}static unsigned char from_b64(unsigned char ch){/* Inverse lookup map */static const unsigned char tab[128] = {255, 255, 255, 255,255, 255, 255, 255, /*  0 */255, 255, 255, 255,255, 255, 255, 255, /*  8 */255, 255, 255, 255,255, 255, 255, 255, /*  16 */255, 255, 255, 255,255, 255, 255, 255, /*  24 */255, 255, 255, 255,255, 255, 255, 255, /*  32 */255, 255, 255, 62,255, 255, 255, 63, /*  40 */52,  53,  54,  55,56,  57,  58,  59, /*  48 */60,  61,  255, 255,255, 200, 255, 255, /*  56   '=' is 200, on index 61 */255, 0,   1,   2,3,   4,   5,   6, /*  64 */7,   8,   9,   10,11,  12,  13,  14, /*  72 */15,  16,  17,  18,19,  20,  21,  22, /*  80 */23,  24,  25,  255,255, 255, 255, 255, /*  88 */255, 26,  27,  28,29,  30,  31,  32, /*  96 */33,  34,  35,  36,37,  38,  39,  40, /*  104 */41,  42,  43,  44,45,  46,  47,  48, /*  112 */49,  50,  51,  255,255, 255, 255, 255, /*  120 */};return tab[ch & 127];}static std::string base64_decode(const std::string& base64){if(base64.empty())return "";int len = base64.size();auto s = (const unsigned char*)base64.data();unsigned char a, b, c, d;int orig_len = len;int dec_len = 0;string out_data;auto end_s = s + base64.size();int count_eq = 0;while(*--end_s == '='){count_eq ++;}out_data.resize(len / 4 * 3 - count_eq);char *dst = const_cast<char*>(out_data.data());char *orig_dst = dst;while (len >= 4 && (a = from_b64(s[0])) != 255 &&(b = from_b64(s[1])) != 255 && (c = from_b64(s[2])) != 255 &&(d = from_b64(s[3])) != 255) {s += 4;len -= 4;if (a == 200 || b == 200) break; /* '=' can't be there */*dst++ = a << 2 | b >> 4;if (c == 200) break;*dst++ = b << 4 | c >> 2;if (d == 200) break;*dst++ = c << 6 | d;}dec_len = (dst - orig_dst);// dec_len必定等于out_data.size()return out_data;}
    };#include OATPP_CODEGEN_END(ApiController) //<-- End Codegen#endif /* MyController_hpp */
  • 启动模型
    在这里插入图片描述
  • 请求接口进行推理

yolov8 模型部署测试

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/76557.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FPGA时序分析与约束(2)——时序电路时序

一、前言 在之前的内容中&#xff0c;我们介绍了组合电路的时序问题和可能导致的毛刺&#xff0c;强烈推荐在阅读前文的基础上再继续阅读本文&#xff0c; 前文链接&#xff1a;FPGA时序分析与约束&#xff08;1&#xff09;——组合电路时序 这篇文章中&#xff0c;我们将继续…

MySQL表空间

MySQL表空间 文章目录 MySQL表空间1. MySQL中的表1.1 IOT表1.2 InnoDB逻辑存储结构2. 独立表空间2.1 段 segment2.1.1 段的概念2.1.2 段的分类2.1.2.1 叶子节点段主要结构2.1.2.2 非叶子节点段2.1.3 碎片区2.2 区2.2.1 区的概念2.2.2 区的结构2.2.2.1 XDES Entry结构2.3 页2.3.…

基于51单片机的称重电子秤proteus仿真设计

一、设计背景 随着微电子技术的应用,市场上使用的传统称重工具已经满足不了人们的要求。为了改变传统称重工具在使用上存在的问题&#xff0c;在本设计中将智能化、自动化、人性化用在了电子秤重的控制系统中。本系统主要由单片机来控制&#xff0c;测量物体重量部分使用称重传…

Activiti7工作流引擎:在线流程编辑器Activiti Modoler5.x

一&#xff1a;简介 有的时候我们的流程图需要业务人员自己绘制&#xff0c;然后使用自己绘制的流程图&#xff0c;此时就需要一个在线流程图编辑器需要集成到我们的web系统中。Activiti Modoler是Activiti官方推出的在线流程编辑器。 二&#xff1a;pom.xml <dependency…

HNU小学期工训-STC15单片机模型大作业实验报告

STC15单片机模型大作业实验报告 全称&#xff1a;基于STC15单片机与OLED显示模块&PC端演示的多功能声光温振时钟智能手表模型 计科210X 甘晴void 202108010XXX 【请注意&#xff1a;本作业入选优秀范例&#xff0c;直接照抄源码有很大风险】 【建议理解原理之后作改动】 …

基于SSM框架的德云社票务系统

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用Vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

Linux入门教程||Linux系统目录结构

登录系统后&#xff0c;在当前命令窗口下输入命令&#xff1a; ls / 你会看到如下图所示: 树状目录结构&#xff1a; 以下是对这些目录的解释&#xff1a; /bin&#xff1a; bin是Binary的缩写, 这个目录存放着最经常使用的命令。 /boot&#xff1a; 这里存放的是启动Linux时…

RP9学习-1

一.基础 1.10个面板位置示意图&#xff1a; 2.常用英文 1.鼠标点击&#xff1a;click or tap 3.工作区 1.恢复默认工作区&#xff1a; view-->reset view 2.自定义工作区&#xff1a; 可以用鼠标左键拖动面板到独立的位置或者吸附到其他面板上 3.自定义工具栏 view-->T…

使用element-ui导航,进入对应的三级页面菜单保持点击状态

1.注意事项 01.路由中使用了keepAlive属性&#xff0c;要用keepAlive&#xff1a;true&#xff0c;不能等于false&#xff0c;使用false页面会刷新 2.使用的方法 NavMenu 导航菜单 3.项目实例 <template><div class"policy-home"><div class"…

【Linux】工具Gdb调试轻度使用(C++)

目录 一、Gdb背景 二、Gdb基本命令 【2.1】list | l 【2.2】break | b 【2.5】delete | d 【2.6】disable 【2.7】enable 【2.3】info 【2.4】info locals 【2.6】run | r 【2.7】next | n 【2.8】step | s 【2.9】 continue | c 【2.10】bt 【2.11】finish 三…

docker镜像详解

目录 什么是docker镜像镜像相关命令docker pulldocker imagesdocker searchdocker rmi导出 / 导入镜像 镜像分层镜像摘要镜像摘要的作用分发散列值 什么是docker镜像 Docker镜像是Docker容器的基础组件&#xff0c;它包含了运行一个应用程序所需的一切&#xff0c;包括代码、运…

sqli第一关

1.在下使用火狐访问sqlilabs靶场并使用burpsuite代理火狐。左为sqlilabs第一关&#xff0c;右为burpsuite。 2.输入?id1 and 11 与?id1 and 12试试 可以看出没有变化哈&#xff0c;明显我们输入的语句被过滤了。在?id1后面尝试各种字符&#xff0c;发现单引号 包…

SpringAOP的使用总结

B站 【尚硅谷新版SSM框架全套视频教程&#xff0c;Spring6SpringBoot3最新SSM企业级开发】https://www.bilibili.com/video/BV1AP411s7D7?p47&vd_source726decf3eb63273901caae35ad437124 AOP即面向切面编程,通过使用一定的技术将非核心方法抽离出来,放入统一的类中进行…

vmware设置桥接模式后ip设置

网络连接方式设置 找到虚拟机里机器的网络设置 左边是宿主机&#xff0c;右边是虚拟机&#xff0c;按照这个设置就可以上网了(IP指定一个没有占用的值&#xff0c;子网掩码和网关设置成一样的)就可以联网了。 over~~

mobaXterm使用pycharm

首先去pycharm的官网PyCharm: the Python IDE for Professional Developers by JetBrains 下载pycharm&#xff08;选择linux的community版本即可&#xff09; 下载后的压缩包拖拽到mobaXterm如下位置&#xff1a; 进入压缩包所在的文件夹&#xff08;图中这个位置是root目录&…

记一次线程堵塞(挂起)导致消息队列积压

1 背景 A服务作为生产者&#xff0c;每天发送上千万的mq消息&#xff0c;每一个消息包含500个用户ids数据。B服务作为消费者&#xff0c;接受MQ消息并通过http调用第三方请求进行业务处理&#xff0c;消费组启用了rabbitmq的多线程消费组&#xff0c;一个实例并发40个mq消费者…

Prompt Tuning训练过程

目录 0. 入门 0.1. NLP发展的四个阶段&#xff1a; Prompt工程如此强大&#xff0c;我们还需要模型训练吗&#xff1f; - 知乎 Prompt learning系列之prompt engineering(二) 离散型prompt自动构建 Prompt learning系列之训练策略篇 - 知乎 ptuning v2 的 chatglm垂直领域训练记…

读高性能MySQL(第4版)笔记05_优化服务器设置

1. 除非遇到异常情况&#xff0c;否则不需要调整配置 1.1. 不要“调优”服务器&#xff0c;不要使用比率、公式或“调优脚本”作为设置配置变量的基础 1.1.1. 在互联网上搜索配置建议并不总是一个好主意&#xff0c;你会在博客、论坛等找到很多糟糕的建议 1.1.2. 很难判断谁…

SpringBoot+Vue 整合websocket实现简单聊天窗口

效果图 1 输入临时名字充当账号使用 2 进入聊天窗口 3 发送消息 &#xff08;复制一个页面&#xff0c;输入其他名字&#xff0c;方便展示效果&#xff09; 4 其他窗口效果 代码实现 后端SpringBoot项目&#xff0c;自行创建 pom依赖 <dependency><groupId…

uni-app 使用uCharts-进行图表展示(折线图带单位)

前言 在uni-app经常是需要进行数据展示&#xff0c;针对这个情况也是有人开发好了第三方包&#xff0c;来兼容不同平台展示 uCharts和pc端的Echarts使用差不多&#xff0c;甚至会感觉在uni-app使用uCharts更轻便&#xff0c;更舒服 但是这个第三方包有优点就会有缺点&#xf…