docker镜像详解

目录

    • 什么是docker镜像
    • 镜像相关命令
      • docker pull
      • docker images
      • docker search
      • docker rmi
      • 导出 / 导入镜像
    • 镜像分层
    • 镜像摘要
      • 镜像摘要的作用
      • 分发散列值

什么是docker镜像

Docker镜像是Docker容器的基础组件,它包含了运行一个应用程序所需的一切,包括代码、运行时环境、系统工具、库和依赖等。Docker镜像的本质,可以分为以下几个方面来解释。

  1. 文件系统层:Docker镜像是由多个文件系统层(Filesystem Layers)组成的。每个层都是只读的,并且包含了文件和目录的变更。这种分层的文件系统结构使得镜像的构建和复用变得非常高效。每个层只需要存储差异部分,大大减小了镜像的体积。
  2. 只读性:Docker镜像是只读的,一旦创建就不能被修改。当需要修改一个镜像时,Docker会在原有的镜像上创建一个新的镜像,这个新镜像会包含原有镜像的所有层,并在其基础上添加新的层。
  3. 分层存储:Docker镜像的文件系统采用分层存储的方式。这意味着多个镜像可以共享同一个文件系统层,从而节省存储空间。当多个容器同时运行时,它们可以共享相同的基础镜像,只需在其基础上添加自己的可写层。
  4. 镜像的构建与复用:Docker镜像的构建是通过Dockerfile文件来定义的。Dockerfile中包含了一系列构建指令,用于描述如何从基础镜像中构建一个新的镜像。这种构建方式使得镜像的构建过程可自动化,并且易于复用和共享。

从操作系统原理角度来看,Docker镜像可以从操作系统原理角度来看,Docker镜像可以类比为操作系统中的文件系统快照。一个Docker镜像可以看作是一个只读的文件系统快照,它包含了应用程序运行所需的所有文件和目录。每个镜像层都相当于文件系统中的一个增量变更,它们按照层级的方式进行组织,使得镜像的构建和复用更加高效。

类似于操作系统中的进程,Docker容器是基于镜像创建的运行实体。当创建一个Docker容器时,Docker会在镜像的基础上添加一层可写的文件系统层,这个层称为容器层。容器层可以进行读写操作,而镜像层是只读的,这样就实现了镜像的复用和容器的隔离。

镜像相关命令

docker pull

# 用法
docker pull [OPTIONS] NAME[:TAG|@DIGEST]

OPTIONS说明:

  • -a:拉取所有 tagged 镜像。
  • –disable-content-trust:忽略镜像的校验,默认开启。
  • -q: 可简化拉取过程中的日志输出。

除此之外,docker pull 也可通过镜像的 digest 进行拉取。语法格式为 docker pull <repository>@<digest>。

digest,是镜像内容的一个 Hash 值,即所谓的 Content Hash(内容散列)。只要镜像内容发生了变更,其内容散列值就一定会发生改变。注意,digest 是包含前面的 sha256 的,表示该 digest 的产生所采用的 Hash 算法是 SHA256。

image-20230906100931556

docker images

# 用法
docker images [OPTIONS] [REPOSITORY[:TAG]]

OPTIONS说明:

  • -a:列出本地所有的镜像(含中间映像层,默认情况下,过滤掉中间映像层);

  • –digests:显示镜像的摘要信息;

  • -f:显示满足条件的镜像;

    使用reference作为筛选条件

    image-20230906112155810

    在使用reference时可以使用通配符 * 进行筛选。需要注意的是,reference只能筛选经过认证的镜像,未经过认证的镜像即使满足条件也不会被筛选。

    使用before作为筛选条件

    image-20230906143827508

    -f before 用于列举出本地镜像中指定镜像创建时间之前创建的所有镜像。

    使用since作为筛选条件

    image-20230906144041234

    -f since 用于列举出本地镜像中指定镜像创建时间之后的创建的所有镜像。

  • –format:指定返回值的模板文件;

    image-20230906144255406

    {{ }}里面的内容与Go语言的模板语法一样。

  • –no-trunc:显示完整的镜像信息;

    image-20230906144122559

    默认的 docker images 显示的镜像 id 是经过截取后的显示结果,仅显示了前 12 位。使用 --no-trunc 参数后显示的是完整的镜像 id。

  • -q:只显示镜像ID。

image-20230906144413589

docker search

# 用法
docker search [OPTIONS] TERM

OPTIONS说明:

  • –limit:对结果进行数量限制;
  • –format:指定返回值的模板文件;
  • –no-trunc:显示完整的镜像描述;
  • -f <过滤条件>:列出收藏数大于指定值的镜像。

从 Docker Hub 查找所有镜像名包含 zookeeper,并且收藏数大于 10 的镜像。

image-20230906152436421

参数说明:

  • NAME: 镜像仓库源的名称

  • DESCRIPTION: 镜像的描述

  • OFFICIAL: 是否 docker 官方发布

  • STARTS: 类似 Github 里面的 star,表示点赞、喜欢的意思。

  • AUTOMATED: 自动构建。

AUTOMATED 表示当前镜像是否是“自动化镜像”。什么是自动化镜像?就是使用 Docker Hub 连接一个包含 Dockerfile 文件(专门构建镜像用的文件)的 GitHub 仓库或 Bitbucket 仓库的源码托管平台,然后 Docker Hub 就会自动根据 Dockerfile 内容构建镜像。这种构建出的镜像会被标记为 AUTOMATED,这种构建镜像的方式称为 Trusted Build(受信构建)。只要 Dockerfile文件内容发生变化,那么 Docker Hub 就会构建出新的镜像。

docker rmi

基本使用

rmi,remove images。该命令用于删除指定的本地镜像。镜像通过:指定。如果省略要删除镜像的 tag,默认删除的是 lastest 版本。

image-20230906164608951

删除多个镜像

docker rmi 命令可一次性删除多个镜像,多个要删除的镜像间使用空格分隔。

image-20230906164752636

通过 ImageID 删除镜像

image-20230906164934942

强制删除镜像

默认情况下,对于已经运行了容器的镜像是不能删除的,必须要先停止并删除了相关容器然后才能删除其对应的镜像。不过,也可以通过添加-f 选项进行强制删除。

image-20230906165051369

删除所有镜像

使用组合命令删除所有镜像。当然,如果不携带-f 选项,则不会删除已打开容器的镜像。

# 命令
[root@centos ~]#docker rmi -f $(docker images -q)

导出 / 导入镜像

导出镜像 save

docker save -o "导出的文件名" "多个镜像名,用空格分隔"

image-20230906193049287

导入镜像 load

docker load 用于将一个 tar 文件导入并加载为一个或多个镜像。

docker load -i "要导入的tar文件"

image-20230906193553813

镜像分层

当构建一个Docker镜像时,Docker会将镜像分解为多个文件系统层,每个层都是只读的,并且包含了文件和目录的变更。这种分层的文件系统结构使得镜像的构建和复用变得非常高效。

image-20230907101040056

上面的示意图展示了一个由3个扩展镜像层和一个基础镜像层组成的Docker镜像。在基础镜像层之上的镜像层称为扩展镜像层。顾名思义,其是对基础镜像层功能的扩展。

在 Dockerfile 中,每条指令都是用于完成某项特定功能的,而每条指令都会生成一个扩展镜像层。

当创建一个新的Docker容器时,Docker会在只读层(扩展镜像层)的基础上添加一个可写层,这个可写层会包含容器运行时所需的文件和目录变更。这样,多个容器就可以共享同一个基础镜像层和多个只读层。分层存储的优势在于镜像的复用和共享。如果有多个镜像使用了相同的基础镜像层,它们可以共享这个基础层,只需在其基础上添加自己的可写层。这样就可以大大减小镜像的体积,并提高镜像的构建和复用效率。

image-20230907101328450

在上面的示意图中,Docker镜像的分层存储通过联合文件系统来实现。可写层是容器运行时的一部分,用于存储容器运行时的变更和数据。只读层包含了基础镜像的内容,它们是只读的,并且可以被多个容器共享。

需要注意的是,这里的分层并不是物理上的分层,而是逻辑上的分层。在底层实现上,Docker使用了联合文件系统(UnionFS)来实现镜像的分层存储。联合文件系统是一种特殊的文件系统,它可以将多个不同的文件系统层合并为一个单一的文件系统。在Docker中,常用的联合文件系统有AUFS、OverlayFS和DeviceMapper等。

镜像摘要

Docker镜像摘要是镜像内容的唯一标识符,它是通过对镜像二进制数据进行哈希运算生成的。摘要可以确保所引用的映像在整个生命周期中始终是相同的。如果镜像内容发生改变,即使名字和标签相同,摘要也会发生改变。

在 docker pull 镜像结束后会给出该拉取的镜像的摘要 digest。并且通过 docker images --digests 命令也可以查看到镜像的摘要信息。

1

镜像摘要的作用

摘要的主要作用是区分相同<repository>:<tag>的不同镜像。

例如某个镜像在生产运行过程中发现存在一个 BUG。现对其进行了修复,并使用原标签将其 push 回了仓库,那么原镜像被覆盖。但生产环境中遗留了大量运行中的修复前镜像的容器。此时,通过镜像标签已经无法区分镜像是修复前的还是修复后的了,因为它们的标签是相同的。此时通过查看镜像的 digest 就可以区分出修改前后版本,因为内容发生了变化,digest 一定会变。为了确保再次拉取到的是修复后的镜像,可通过 digest 进行镜像拉取。其用法是:docker pull <repository>@<digest>

分发散列值

在 push 或 pull 镜像时,都会对镜像进行压缩以减少网络带宽和传输时长。但压缩会改变镜像内容,会导致经过网络传输后,镜像内容与其 digest 不相符。为了避免该问题,Docker 又为镜像配置了 Distribution Hash(分发散列值)。在镜像被压缩后立即计算分发散列值,然后使该值随压缩过的镜像一同进行发送。在接收方接收后,立即计算压缩镜像的分发散列值,再与携带的分发散列值对比。如果相同,则说明传输没有问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/76538.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

sqli第一关

1.在下使用火狐访问sqlilabs靶场并使用burpsuite代理火狐。左为sqlilabs第一关&#xff0c;右为burpsuite。 2.输入?id1 and 11 与?id1 and 12试试 可以看出没有变化哈&#xff0c;明显我们输入的语句被过滤了。在?id1后面尝试各种字符&#xff0c;发现单引号 包…

SpringAOP的使用总结

B站 【尚硅谷新版SSM框架全套视频教程&#xff0c;Spring6SpringBoot3最新SSM企业级开发】https://www.bilibili.com/video/BV1AP411s7D7?p47&vd_source726decf3eb63273901caae35ad437124 AOP即面向切面编程,通过使用一定的技术将非核心方法抽离出来,放入统一的类中进行…

vmware设置桥接模式后ip设置

网络连接方式设置 找到虚拟机里机器的网络设置 左边是宿主机&#xff0c;右边是虚拟机&#xff0c;按照这个设置就可以上网了(IP指定一个没有占用的值&#xff0c;子网掩码和网关设置成一样的)就可以联网了。 over~~

mobaXterm使用pycharm

首先去pycharm的官网PyCharm: the Python IDE for Professional Developers by JetBrains 下载pycharm&#xff08;选择linux的community版本即可&#xff09; 下载后的压缩包拖拽到mobaXterm如下位置&#xff1a; 进入压缩包所在的文件夹&#xff08;图中这个位置是root目录&…

记一次线程堵塞(挂起)导致消息队列积压

1 背景 A服务作为生产者&#xff0c;每天发送上千万的mq消息&#xff0c;每一个消息包含500个用户ids数据。B服务作为消费者&#xff0c;接受MQ消息并通过http调用第三方请求进行业务处理&#xff0c;消费组启用了rabbitmq的多线程消费组&#xff0c;一个实例并发40个mq消费者…

Prompt Tuning训练过程

目录 0. 入门 0.1. NLP发展的四个阶段&#xff1a; Prompt工程如此强大&#xff0c;我们还需要模型训练吗&#xff1f; - 知乎 Prompt learning系列之prompt engineering(二) 离散型prompt自动构建 Prompt learning系列之训练策略篇 - 知乎 ptuning v2 的 chatglm垂直领域训练记…

读高性能MySQL(第4版)笔记05_优化服务器设置

1. 除非遇到异常情况&#xff0c;否则不需要调整配置 1.1. 不要“调优”服务器&#xff0c;不要使用比率、公式或“调优脚本”作为设置配置变量的基础 1.1.1. 在互联网上搜索配置建议并不总是一个好主意&#xff0c;你会在博客、论坛等找到很多糟糕的建议 1.1.2. 很难判断谁…

SpringBoot+Vue 整合websocket实现简单聊天窗口

效果图 1 输入临时名字充当账号使用 2 进入聊天窗口 3 发送消息 &#xff08;复制一个页面&#xff0c;输入其他名字&#xff0c;方便展示效果&#xff09; 4 其他窗口效果 代码实现 后端SpringBoot项目&#xff0c;自行创建 pom依赖 <dependency><groupId…

uni-app 使用uCharts-进行图表展示(折线图带单位)

前言 在uni-app经常是需要进行数据展示&#xff0c;针对这个情况也是有人开发好了第三方包&#xff0c;来兼容不同平台展示 uCharts和pc端的Echarts使用差不多&#xff0c;甚至会感觉在uni-app使用uCharts更轻便&#xff0c;更舒服 但是这个第三方包有优点就会有缺点&#xf…

vue 部署到本机IIS 部署 SPA 应用

安装 URL Rewrite Works With: IIS 7, IIS 7.5, IIS 8, IIS 8.5, IIS 10 URL Rewrite : The Official Microsoft IIS Site 目前电脑IIS是6版本的&#xff0c;以下的方法不太合适操作。目前用Nginx部署&#xff0c;够用了。 nginx配置参考&#xff1a; uni-app 前面项目&am…

Segment Anything Model(SAM)论文解读

一、引言 在这项工作中&#xff0c;作者的目标是建立一个图像分割的基础模型。也就是说&#xff0c;寻求开发一个提示模型&#xff0c;并使用一个能够实现强大泛化的任务在广泛的数据集上对其进行预训练。有了这个模型&#xff0c;使用即时工程解决新数据分布上的一系列下游分…

Nacos docker实现nacos高可用集群项目

目录 Nacos是什么&#xff1f; Nacos在公司里的运用是什么&#xff1f; 使用docker构建nacos容器高可用集群 实验规划图&#xff1a;​编辑 1、拉取nacos镜像 2、创建docker网桥&#xff08;实现集群内的机器的互联互通&#xff08;所有的nacos和mysql&#xff09;&#x…

环境变量与Path环境变量

“环境变量”和“path环境变量”其实是两个东西&#xff0c;这一点大家一定要区分开&#xff0c;不要混为一谈。 “环境变量”是操作系统工作环境设置的一些选项或属性参数。每个环境变量由变量名和文件路径组成的&#xff0c;可以设置很多个环境变量。 我们一般使用环境变量…

冒泡排序、选择排序、插入排序、希尔排序

冒泡排序 基本思想 代码实现 # 冒泡排序 def bubble_sort(arr):length len(arr) - 1for i in range(length):flag Truefor j in range(length - i):if arr[j] > arr[j 1]:temp arr[j]arr[j] arr[j 1]arr[j 1] tempflag Falseprint(f第{i 1}趟的排序结果为&#…

正规好用的电脑端抽奖软件有哪些?

这几个软件都是本人反复用过、反复比较的&#xff0c;且都超过5年。 1. 518抽奖软件 518抽奖软件&#xff0c;518我要发&#xff0c;超好用的年会抽奖软件&#xff0c;简约设计风格。 包含文字号码抽奖、照片抽奖两种模式&#xff0c;支持姓名抽奖、号码抽奖、数字抽奖、照片抽…

测试平台部署三——Nginx

测试平台部署——Nginx 一、nginx部署1、nginx的作用:2、案例1二、django静态文件配置和部署1、nginx工作原理2、反向代理一、nginx部署 1、nginx的作用: 静态文件服务器和反向代理django服务 进入nginx容器中 sudo docker run --rm -it nginx:alpine /bin/sh

岩土工程安全监测利器:振弦采集仪的发展

岩土工程安全监测利器&#xff1a;振弦采集仪的发展 岩土工程安全监测是保障建筑物、地下工程和地质环境安全稳定运行的重要手段。传统上&#xff0c;监测手段主要依靠人工巡视以及基础设施安装的传感器&#xff0c;但是这些方法都存在着缺陷。人工巡视存在的问题是数据采集精…

Linux驱动【day2】

mychrdev.c: #include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include<linux/uaccess.h> #include<linux/io.h> #include"head.h" unsigned int major; // 保存主设备号 char kbuf[128]{0}; unsigned int…

【linux基础(五)】Linux中的开发工具(上)---yum和vim

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到开通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; Linux中的开发工具 1. 前言2.…

4、Nginx 配置实例-反向代理

文章目录 4、nginx 配置实例-反向代理4.1 反向代理实例一4.1.1 实验代码 4.3 反向代理实例二4.3.1 实验代码 【尚硅谷】尚硅谷Nginx教程由浅入深 志不强者智不达&#xff1b;言不信者行不果。 4、nginx 配置实例-反向代理 4.1 反向代理实例一 实现效果&#xff1a;使用 nginx…