Linux信号处理

Linux信号处理

什么是linux信号

本质是一种通知机制,用户 or 操作系统通过发送一定的信号,通知进程,某些事情已经发生,你可以在后续进行处理。

信号产生是随机的,进程可能正在忙自己的事情,所以,信号的后续处理,可能不是立即处理的!信号会临时的记录下对应的信号,方便后续进行处理。

信号是进程之间事件异步通知的一种方式,属于软中断。

信号处理的常见方式:

  • 默认(进程自带的,程序员写好的逻辑)
  • 忽略(也是信号的一种处理方式)
  • 自定义(捕捉信号)

信号如何被进程保存呢:

进程具有保存信号的相关数据结构(位图,unisgned int)。也就是PCB内部保存了信号位图字段。

如何理解信号发送的本质:

OS向目标进程写信号:OS直接修改pcb中的指定位图结构,完成“发送”信号的过程。

常见信号:

用kill -l命令可以察看系统定义的信号列表

在这里插入图片描述

每个信号都有一个编号和一个宏定义名称,这些宏定义可以在signal.h中找到,例如其中有定 义 #define SIGINT 2

1 – 31为普通信号(非可靠信号)

34 – 64为实时信号(可靠信号)

本文只讨论普通信号

产生信号

  1. 通过终端按键产生信号

    SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump。

    Core Dump(核心转储)

    首先解释什么是Core Dump。当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部 保存到磁盘上,文件名通常是core,这叫做Core Dump。进程异常终止通常是因为有Bug,比如非法内存访问导致段错误,事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中)。默认是不允许产生core文件的,因为core文件中可能包含用户密码等敏感信息,不安全。在开发调试阶段可以用ulimit命令改变这个限制,允许产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K: $ ulimit -c 1024

    然后写一个死循环程序:

    在这里插入图片描述

    前台运行这个程序,然后在终端键入Ctrl-C 或 Ctrl-\

    在这里插入图片描述
    ulimit命令改变了Shell进程的Resource Limit,test进程的PCB由Shell进程复制而来,所以也具 有和Shell进程相同的Resource Limit值,这样就可以产生Core Dump了。 使用core文件:
    在这里插入图片描述

    在这里插入图片描述

    core dump标志就表示是否发生了核心转储

    一般而言,云服务器(生产环境)的核心转储功能是被关闭的

  2. 调用系统函数向进程发信号

    kill命令是调用kill函数实现的。kill函数可以给一个指定的进程发送指定的信号。raise函数可以给当前进程发送指定的信号(自己给自己发信号)

    [hmy@VM-8-15-centos homework]$ kill -2 3145
    #-2是发送2号命令,3145是给指定进程(pid)发送信号
    
    #include <signal.h>
    int kill(pid_t pid, int signo); //kill函数可以给一个指定的进程发送指定的信号
    int raise(int signo); //raise函数可以给当前进程发送指定的信号(自己给自己发信号)
    //这两个函数都是成功返回0,错误返回-1。
    

    abort函数使当前进程接收到信号而异常终止。

    #include <stdlib.h>
    void abort(void);
    //就像exit函数一样,abort函数总是会成功的,所以没有返回值。
    
  3. 由软件条件产生信号

    SIGPIPE : 默认情况下,如果进程向一个已经关闭写入端的管道写入数据,操作系统会发送 SIGPIPE 信号给该进程

    alarm函数 和 SIGALRM信号:

    #include <unistd.h>
    unsigned int alarm(unsigned int seconds);
    调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号, 该信号的默认处理动作是终止当前进程。
    

    这个函数的返回值是0或者是以前设定的闹钟时间还余下的秒数。打个比方,某人要小睡一觉,设定闹钟为30分钟之后响,20分钟后被人吵醒了,还想多睡一会儿,于是重新设定闹钟为15分钟之后响,“以前设定的闹钟时间还余下的时间”就是10分钟。如果seconds值为0,表示取消以前设定的闹钟,函数的返回值仍然是以前设定的闹钟时间还余下的秒数

    #include<iostream>
    #include<unistd.h>
    int main()
    {int count = 0;alarm(1);while(true){cout << count++ << endl;}return 0;
    }
    

    这个程序的作用是1秒钟之内不停地数数,1秒钟到了就被SIGALRM信号终止。

  4. 硬件异常产生信号

    硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。例如当前进程执行了除以0的指令,CPU的运算单元会产生异常,内核将这个异常解释为SIGFPE信号发送给进程。再比如当前进程访问了非法内存地址,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。

    由此可以确认,我们在C/C++当中除零,内存越界等异常,在系统层面上,是被当成信号处理的。

总结一下

  • 上面所说的所有信号产生,最终都要有OS来进行执行,为什么?OS是进程的管理者
  • 信号的处理是否是立即处理的?在合适的时候
  • 信号如果不是被立即处理,那么信号是否需要暂时被进程记录下来?记录在哪里最合适呢?
  • 一个进程在没有收到信号的时候,能否能知道,自己应该对合法信号作何处理呢?
  • 如何理解OS向进程发送信号?能否描述一下完整的发送处理过程?

阻塞信号

信号其他相关常见概念:

  • 实际执行信号的处理动作称为信号递达(Delivery)
  • 信号从产生到递达之间的状态,称为信号未决(Pending)。
  • 进程可以选择阻塞 (Block )某个信号。
  • 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作.
  • 注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。

在内核中的表示:

信号在内核中的表示示意图

在这里插入图片描述

  • 每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
  • SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。
  • SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。 如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?POSIX.1允许系统递送该信号一次或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。本章不讨论实时信号

sigset_t

从上图来看,每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态,在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。 阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。

信号集操作函数:

sigset_t类型对于每种信号用一个bit表示“有效”或“无效”状态,至于这个类型内部如何存储这些bit则依赖于系统实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_ t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的

#include <signal.h>
int sigemptyset(sigset_t *set); //位图全部置0
int sigfillset(sigset_t *set); //该函数用于初始化一个信号集,使其包含所有已知的信号
int sigaddset (sigset_t *set, int signo); //将信号signo所在位图位置置1
int sigdelset(sigset_t *set, int signo); //将信号signo所在位图位置置0
//以上四个函数都是成功返回0,出错返回-1
int sigismember(const sigset_t *set, int signo); //判断信号signo在不在位图中

sigprocmask

调用函数sigprocmask可以读取或更改进程的信号屏蔽字(阻塞信号集)(block位图)

#include <signal.h>
int sigprocmask(int how, const sigset_t *set, sigset_t *oset); 
返回值:若成功则为0,若出错则为-1

如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。如果set是非空指针,则 更改进程的信号屏蔽字,参数how指示如何更改。如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。假设当前的信号屏蔽字为mask,下表说明了how参数的可选值。

SIG_BLOCKset包含了我们希望添加到当前信号屏蔽字的信号,相当于mask=mask|set
SIG_UNBLOCKset包含了我们希望从当前信号屏蔽字中解除阻塞的信号,相当于mask=mask&~set
SIG_SETMASK设置当前信号屏蔽字为set所指向的值,相当于mask=set

如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达。

sigpending

#include <signal.h>
int sigpending(sigset_t *set);
读取当前进程的未决信号集,通过set参数传出。调用成功则返回0,出错则返回-1

捕捉信号

信号的捕捉

在这里插入图片描述

内核如何实现信号的捕捉

如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。由于信号处理函数的代=码是在用户空间的,处理过程比较复杂,举例如下: 用户程序注册了SIGQUIT信号的处理函数sighandler。 当前正在执行main函数,这时发生中断或异常切换到内核态。 在中断处理完毕后要返回用户态的main函数之前检查到有信号SIGQUIT递达。 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函数,sighandler和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是 两个独立的控制流程。 sighandler函返回后自动执行特殊的系统调用sigreturn再次进入内核态。 如果没有新的信号要递达,这次再返回用户态就是恢复main函数的上下文继续执行了

sigaction

#include <signal.h>
int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);
  • ​ sigaction函数可以读取和修改与指定信号相关联的处理动作。调用成功则返回0,出错则返回- 1。signo是指定信号的编号。若act指针非空,则根据act修改该信号的处理动作。若oact指针非 空,则通过oact传出该信号原来的处理动作。act和oact指向sigaction结构体:
  • 将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函 数,该函数返回值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用。

struct sigaction结构体

struct sigaction {void     (*sa_handler)(int); //指向信号处理函数,当信号发生时系统会调用这个函数void     (*sa_sigaction)(int, siginfo_t *, void *); //实时信号的处理函数sigset_t   sa_mask; //block屏蔽字,指定要阻塞的信号集合int        sa_flags; //一个标志集合,用于指定信号处理的选项void     (*sa_restorer)(void);//已经过时,不使用
};

当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。 如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。 sa_flags字段包含一些选项,本章的代码都把sa_flags设为0,sa_sigaction是实时信号的处理函数,本章不详细解释这两个字段。

可重入函数

在这里插入图片描述

main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步的 时候,因为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换 到sighandler函数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作的 两步都做完之后从sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步之后被打断,现在继续做完第二步。结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中了

像上例这样,insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称为重入,insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为 不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。想一下,为什么两个不同的控制流程调用同一个函数,访问它的同一个局部变量或参数就不会造成错乱?

如果一个函数符合以下条件之一则是不可重入的:

  • 调用了malloc或free,因为malloc也是用全局链表来管理堆的。
  • 调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构。

拓展:SIGCHLD信号

进程一章讲过用wait和waitpid函数清理僵尸进程,父进程可以阻塞等待子进程结束,也可以非阻 塞地查询是否有子进程结束等待清理(也就是轮询的方式)。采用第一种方式,父进程阻塞了就不 能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一 下,程序实现复杂。

其实,子进程在终止时会给父进程发SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自 定义SIGCHLD信号的处理函数,这样父进程只需专心处理自己的工作,不必关心子进程了,子进程 终止时会通知父进程,父进程在信号处理函数中调用wait清理子进程即可。

请编写一个程序完成以下功能:父进程fork出子进程,子进程调用exit(2)终止,父进程自定 义SIGCHLD信号的处理函数,在其中调用wait获得子进程的退出状态并打印。

事实上,由于UNIX 的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调 用sigaction将SIGCHLD的处理动作置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不 会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用sigaction函数自定义的忽略 通常是没有区别的,但这是一个特例。此方法对于Linux可用,但不保证在其它UNIX系统上都可 用。

程序验证这样做不会产生僵尸进程

#include<iostream>
#include<stdlib.h>
#include<signal.h>
#include<sys/wait.h>
#include<stdio.h>
#include<unistd.h>
using namespace std;
void sigcb(int signum)
{pid_t id;int statue;while((id = waitpid(-1,&statue,WNOHANG)) > 0){cout<<"父进程收到子进程:"<<id<<" 是否正常退出:"<<WIFEXITED(statue)\<<" 退出码:"<<WEXITSTATUS(statue)<<endl;}
}
int main()
{signal(SIGCHLD,sigcb);for(int i=0;i<3;++i){pid_t id = fork();if(id == 0){sleep(5);exit(2);}}while(true) {cout<<"parent is working!"<<endl;sleep(1);}return 0;
}
[hmy@VM-8-15-centos homework]$ cat s.shell 
#!/bin/bash
while true
dops -axj | head -1 && ps -axj | grep homework | grep -v grepecho "-------------------------------"sleep 1
done
{cout<<"parent is working!"<<endl;sleep(1);
}
return 0;

}


```bash
[hmy@VM-8-15-centos homework]$ cat s.shell 
#!/bin/bash
while true
dops -axj | head -1 && ps -axj | grep homework | grep -v grepecho "-------------------------------"sleep 1
done

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/764793.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

30V转5V 1A 30降压12V 1A DCDC低电压恒压IC 车充芯片-H4110

30V转5V和30V转12V的DCDC低电压恒压IC&#xff08;也称为降压恒压芯片或车充芯片&#xff09;工作原理如下&#xff1a; 输入电压识别&#xff1a;芯片首先识别输入的30V电压&#xff0c;并准备进行转换。 PWM控制&#xff1a;芯片内部的控制逻辑生成PWM信号。这个信号用于控制…

如何使用 Elasticsearch 作为向量数据库

在今天的文章中&#xff0c;我们将很快地通过 Docker 来快速地设置 Elasticsearch 及 Kibana&#xff0c;并设置 Elasticsearch 为向量搜索。 拉取 Docker 镜像 docker pull docker.elastic.co/elasticsearch/elasticsearch:8.12.2 docker pull docker.elastic.co/kibana/kiba…

Docker构建多平台(x86,arm64)构架镜像

这里写自定义目录标题 背景配置buildx开启experimental重启检查 打包 背景 docker镜像需要支持不同平台架构 配置buildx 开启experimental vi /etc/docker/daemon.json {"experimental": true }或者 重启检查 # 验证buildx版本 docker buildx version# 重启do…

基于Spring Boot+Vue的高校办公室行政事务管理系统

末尾获取源码作者介绍&#xff1a;大家好&#xff0c;我是墨韵&#xff0c;本人4年开发经验&#xff0c;专注定制项目开发 更多项目&#xff1a;CSDN主页YAML墨韵 学如逆水行舟&#xff0c;不进则退。学习如赶路&#xff0c;不能慢一步。 目录 一、项目简介 二、开发技术与环…

OpenCV 介绍使用

返回&#xff1a;OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇:OpenCV4.9.0开源计算机视觉库使用简要说明 下一篇: OpenCV&#xff08;开源计算机视觉库&#xff1a;http://opencv.org&#xff09;是一个开源库&#xff0c;包含数百种计算机视觉算法。…

vCenter 6.5为虚拟机添加GPU直通

参考&#xff1a;Dell文档 如何为GPU直通启用VMware虚拟机。 | Dell 中国

lvs+keepalived+nginx实现高可用

主机&#xff1a;192.168.199.132 备机&#xff1a;192.168.199.133 真实服务器1&#xff1a;192.168.199.134 真实服务器2&#xff1a;192.168.199.135 问题&#xff1a; 防火墙没关 132配置ipvsadm进行dr模式 132配置keepalived.conf 133配置ipvsadm进行dr模式 133配置ke…

手机网页关键词视频爬虫采集软件可导出视频分享链接|视频无水印批量下载工具

全新音视频批量下载工具&#xff0c;为您解放视频管理烦恼&#xff01; 现如今&#xff0c;音上涌现出大量精彩的视频内容&#xff0c;但是要想高效地获取、管理和分享这些视频却是一件颇具挑战的事情。针对这一难题&#xff0c;我们自主研发了全新的音视频批量下载工具&#x…

CISP 4.2备考之《安全支撑技术》知识点总结

文章目录 第一节 密码技术第二节 标识和身份鉴别技术第三节 访问控制技术 第一节 密码技术 密码学发展阶段&#xff1a;古典、近代、现代和公钥密码学及特点。 密码系统组成&#xff1a;明文、加密、密钥、解密、密文。 柯克霍夫原则&#xff1a;密钥保密&#xff0c;算法公开…

文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《基于合作博弈与矩阵半张量积的多园区综合能源系统协同优化运行方法》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

Day42:WEB攻防-PHP应用MYSQL架构SQL注入跨库查询文件读写权限操作

目录 PHP-MYSQL-Web组成架构 PHP-MYSQL-SQL常规查询 手工注入 PHP-MYSQL-SQL跨库查询 跨库注入 PHP-MYSQL-SQL文件读写 知识点&#xff1a; 1、PHP-MYSQL-SQL注入-常规查询 2、PHP-MYSQL-SQL注入-跨库查询 3、PHP-MYSQL-SQL注入-文件读写 MYSQL注入&#xff1a;&#xff…

什么是PLC物联网关?PLC物联网关有哪些功能?

在数字化浪潮的推动下&#xff0c;工业物联网&#xff08;IIoT&#xff09;正逐步成为推动制造业智能化转型的关键力量。而在这一变革中&#xff0c;PLC物联网关扮演着至关重要的角色。今天&#xff0c;就让我们一起走进PLC物联网关的世界&#xff0c;了解它的定义、功能&#…

计算机组成原理 例题集

补码的规格化表示是小数点后一位与符号位不同&#xff1a;数符为0,这个数就是正数,正数补码就是其本身,其最高有效位(阶码使用标准移码的话规格化后尾数最高有效位就是小数点后第一位)必定为1,数符0和最高有效位的1相异.数符为1,这个数就是个负数,求负数的补码有一步叫按位取反…

在服务器(Ubuntu20.04)安装用户级别的cuda11.8(以及仿照前面教程安装cuda11.3后安装cudnn和pytorch1.9.0)

1、cuda11.8的下载 首先在cuda官网下载我们需要的cuda版本&#xff0c;这里我下载的是cuda11.8&#xff08;我的最高支持cuda12.0&#xff09; 这里我直接使用wget命令下载不了&#xff0c;于是我直接在浏览器输入后面的链接下载到本地&#xff0c;之后再上传至服务器的&am…

Springboot+vue的四川美食分享网站+数据库+报告+免费远程调试

项目介绍: Springbootvue的四川美食分享网站。Javaee项目&#xff0c;springboot vue前后端分离项目 本文设计了一个基于Springbootvue的前后端分离的四川美食分享网站&#xff0c;采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&am…

python网络相册设计与实现flask-django-nodejs-php

此系统设计主要采用的是python语言来进行开发&#xff0c;采用django框架技术&#xff0c;框架分为三层&#xff0c;分别是控制层Controller&#xff0c;业务处理层Service&#xff0c;持久层dao&#xff0c;能够采用多层次管理开发&#xff0c;对于各个模块设计制作有一定的安…

【Java基础】了解Java安全体系JCA,使用BouncyCastle的ED25519算法生成密钥对、数据签名

文章目录 一.Java安全体系结构二.JCA和JCE三.CSP(加密服务提供程序)与Engine类1.CSP2.Engine类如何使用引擎类 四.查看当前JDK支持的算法服务提供商(Provider)五.BouncyCastle是什么六.如何使用BouncyCastle&#xff1f;七.bouncycastle实现ED25519工具类 一.Java安全体系结构 …

python文学名著分享系统的设计与实现flask-django-nodejs-php

在此基础上&#xff0c;结合现有文学名著分享体系的特点&#xff0c;运用新技术&#xff0c;构建了以python为基础的文学名著分享信息化管理体系。首先&#xff0c;以需求为依据&#xff0c;根据需求分析结果进行了系统的设计&#xff0c;并将其划分为管理员和用户二种角色和多…

NIVision-相机图像采集

应用场景 上位机与工业相机通讯&#xff0c;控制相机抓取图像。 工业相机的通讯接口大多为USB口或网口。 USB口则直接将通讯线缆插入上位机USB端口&#xff0c;打开MAX中设备与接口一栏可以看到电脑给相机分配的资源名称&#xff1b;网口则需要将网线连接相机和上位机&#xf…

(附源码)基于Spring Boot + Vue 在线网课学习系统的设计与实现

前言 &#x1f497;博主介绍&#xff1a;✌专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f447;&#x1f3fb; 精彩专栏 推荐订阅&#x1f447;&#x1f3fb; 2024年Java精品实战案例《100套》 &#x1f345;文末获取源码联系&#x1f345; &#x1f31…