【LeetCode】--- 动态规划 集训(一)

目录

  • 一、1137. 第 N 个泰波那契数
    • 1.1 题目解析
    • 1.2 状态转移方程
    • 1.3 解题代码
  • 二、面试题 08.01. 三步问题
    • 2.1 题目解析
    • 2.2 状态转移方程
    • 2.3 解题代码
  • 三、746. 使用最小花费爬楼梯
    • 3.1 题目解析
    • 3.2 状态转移方程
    • 3.3 解题代码

一、1137. 第 N 个泰波那契数

题目地址: 1137. 第 N 个泰波那契数


泰波那契序列 Tn定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n,请返回第 n个泰波那契数 Tn的值。

示例 1:
输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
示例 2:
输入:n = 25
输出:1389537

1.1 题目解析

因为要求的是第n个泰波那契序列,所以我们可以创建一个长度为 n 的dp表,用来表示第i位置的泰波那契序列(即:dp[i]表示:第 i 个泰波那契序列的值)。

接下来便是初始化,因为 dp[i]位置是前三个数的和,所以为了后序填表时不越界,要先初始化前三个数。题目中已给出前三个值,完成初始化即可(dp[0] = 0; dp[1] = dp[2] = 1;)。

填表顺序是:从左到右,依次填表。从下标为 3 的位置开始填表。

返回值为:dp[n],即第 n 个位置的泰波那契序列的值。还需要注意的小细节是,当序列长度不足 3 时,要单独判断返回值。

1.2 状态转移方程

依据题目要求(已给出):dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];

1.3 解题代码

class Solution 
{
public:int tribonacci(int n) {//1. 创建dp表//2. 初始化//3. 填表//4. 返回结束if(n == 0) return 0;if(n == 1 || n == 2) return 1;vector<int> dp(n + 1);dp[0] = 0, dp[1] = dp[2] = 1;for(int i = 3; i <= n ; ++i)dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];return dp[n];}
};

二、面试题 08.01. 三步问题

题目地址: 面试题 08.01. 三步问题


三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1:
输入:n = 3
输出:4
说明: 有四种走法
示例2:
输入:n = 5
输出:13

2.1 题目解析

为了求到第 n 级台阶的方法数,可以定义一个长度为 n+1 的dp表,dp[i]表示:到 i 位置时,一共有多少种方法。

状态转移方程的确立,因为小孩可以一次走一级,两级或三级台阶,所以他可以从第 n-1, n-2 或 n-3 级台阶上到第 n 级台阶。所以到第 n 级台阶的总方法数,是到上述三种台阶的方法数总和。(以 i 位置的状态,最近的一步,来划分问题

在这里插入图片描述

接下来便是初始化,为了在填 dp 表时不越界(即取dp[i - 3]时),所以需要初始化前三个状态表的值(dp[1] = 1, dp[2] = 2, dp[3] = 4;)。还可以再多开一个位置,使台阶序号和 dp 表对应。

填表顺序:从左到右依次填表,从下标为 4 的位置开始填。

返回值:返回 dp[n],即到第 n 级台阶的方法数。n <= 3 时要单独判断,因为状态表从下标为 4 位置开始判断(利用最近的前三个状态)

2.2 状态转移方程

依据题目要求:dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];。还需要注意的是为了防止越界,顺应题目要求,要对结果模1000000007。那么便可写成如下格式:dp[i] = ((dp[i - 1] + dp[i - 2]) % num + dp[i - 3]) % num;

2.3 解题代码

class Solution 
{
public:int waysToStep(int n) {//1. 创建dp表//2. 初始化//3. 填表//4. 返回结束if(n == 1 || n == 2) return n;if(n == 3) return 4;vector<int> dp(n + 1);dp[1] = 1, dp[2] = 2, dp[3] = 4;int num = 1e9 + 7;for(int i = 4; i <= n; ++i)dp[i] = ((dp[i - 1] + dp[i - 2]) % num + dp[i - 3]) % num;return dp[n];}
};

三、746. 使用最小花费爬楼梯

题目地址: 746. 使用最小花费爬楼梯


给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。

示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。

  • 支付 15 ,向上爬两个台阶,到达楼梯顶部。

总花费为 15 。

示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。

  • 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
  • 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
  • 支付 1 ,向上爬一个台阶,到达楼梯顶部。

总花费为 6 。

3.1 题目解析

此题所求的是达到楼梯顶部的最低花费,那么我们便可定义一个长度为 n+1 的 dp 状态表。多开一个是因为,此处的楼梯顶部,不是数组cost.size(),而是最后一个位置的下一个。那么我们便可使用,dp[i]来表示:到达 i 位置时,最小花费。

状态转移方程的确立,可以根据最小花费,因为一次可以向上爬一个或两个台阶。那么到达第 i 级台阶的最小花费,便可用最近的状态推导 dp[i]即:1. 先到达 i - 1位置,然后支付cost[i - 1],走一步(dp[i - 1] + cost[i - 1]); 2. 先到达 i - 2位置,然后支付cost[i - 2],走两步(dp[i - 2] + cost[i - 2])。然后求两者最小值,这便是到达第 i 级台阶的最小费用。

在这里插入图片描述

初始化:为了后序填表不越界,且初始化的值不影响填表,所以可将前两个状态初始化为0(dp[0] = dp[1] = 0;)。

填表顺序:从左到右,依次填表。从下标为 2 的位置开始填。

返回值dp[n]即是到达楼梯顶部的最低费用。

3.2 状态转移方程

依据题目要求:dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i -2]);

3.3 解题代码

class Solution 
{
public:int minCostClimbingStairs(vector<int>& cost) {//1. 创建dp表//2. 初始化//3. 填表//4. 返回结束int n = cost.size();vector<int> dp(n + 1);dp[0] = 0, dp[1] = 0;for(int i = 2; i <= n; ++i)dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);return dp[n];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/763659.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

苏州城市学院芮国强一行莅临聚合数据走访调研

3月19日&#xff0c;苏州城市学院校党委书记芮国强、校长赵志宏一行莅临聚合数据&#xff0c;就数据科技赋能行业升级展开调研。聚合数据董事长左磊接待来访。 城市学院党委理论学习中心组一行参观了聚合数据展厅&#xff0c;了解了聚合数据的发展历程、数据产品、应用案例、奖…

QT信号和槽机制connect用法

信号与槽机制是绝对不可或缺且常用的&#xff0c;其中的参数一般都会比较简单&#xff0c;bool、int、QString之类的&#xff0c;但当我们想要传递相对比较复杂的参数&#xff0c;例如QVector<int>、QList<QString>&#xff0c;以及一些我们自定义的结构体时&#…

常用的6个的ChatGPT网站,国内可用!

GPTGod &#x1f310; 链接&#xff1a; GPTGod &#x1f3f7;️ 标签&#xff1a; GPT-4 免费体验 支持API 支持绘图 付费选项 &#x1f4dd; 简介&#xff1a;GPTGod 是一个功能全面的平台&#xff0c;提供GPT-4的强大功能&#xff0c;包括API接入和绘图支持。用户可以选择免…

深入BEV感知中的魔鬼细节:综述、评估和秘诀

深入BEV感知中的魔鬼细节&#xff1a;综述、评估和秘诀 论文链接&#xff1a;https://arxiv.org/pdf/2209.05324.pdf 学习感知任务的鸟瞰图&#xff08;BEV&#xff09;中的强大表示法是一种趋势&#xff0c;并引起了工业界和学术界的广泛关注。大多数自动驾驶常规方法是在前…

【那些年错过的好书】——TypeScript+Vue.js前端开发从入门到精通

喜欢前端的同学&#xff0c;可以私信我加入学习群&#xff0c;或关注公众号——【前端系列教程】 正文开始 前言推荐理由作者简介书籍特点章节介绍实书示例写在最后 前言 陌生的朋友&#xff0c;你是否曾为前途而迷茫&#xff0c;看不到努力的价值&#xff0c;时常感到焦虑………

MySQL中Buffer pool、Log Buffer和redo、undo日志介绍

MySQL中Buffer pool、Log Buffer和redo、undo日志介绍 Buffer Pool 原理MySQL中的内存结构Buffer PoolChange BufferLog Buffer redo和undo日志redo日志为什么需要REDO日志redo log 基本概念redo的组成redo的整体流程redo log的刷盘策略 undo 日志undo log 基本概念undo log的作…

Qt 不同数据类型转换

一.不同类型数据转换示例&#xff1a; #include <QGuiApplication> #include <QQmlApplicationEngine> #include <QJsonDocument> #include <QJsonObject> #include <QDebug>int main(int argc, char *argv[]) {QCoreApplication::setAttribute…

别踩坑!2024年小红书代写代发机构选择指南!

在小红书平台上&#xff0c;一篇优质的内容往往能迅速吸引用户的关注&#xff0c;为品牌带来不可估量的曝光和转化。然而&#xff0c;对于许多品牌来说&#xff0c;创作高质量的小红书内容并非易事。因此&#xff0c;选择一家专业的小红书代写代发机构成为了不少品牌的明智之选…

【前端Vue】社交信息头条项目完整笔记第2篇:二、登录注册,准备【附代码文档】

社交媒体-信息头条项目完整开发笔记完整教程&#xff08;附代码资料&#xff09;主要内容讲述&#xff1a;一、项目初始化使用 Vue CLI 创建项目,加入 Git 版本管理,调整初始目录结构,导入图标素材,引入 Vant 组件库,移动端 REM 适配,关于 , 配置文件,封装请求模块。十、用户关…

线程池相关详解

1.线程池的核心参数 线程池核心参数主要参考ThreadPoolExecutor这个类的7个参数的构造函数&#xff1a; corePoolSize核心线程数目 maximumPoolSize最大线程数目&#xff08;核心线程救急线程的最大数目&#xff09; keepAliveTime生存时间:救急线程的生存时间&#xff0c;生…

【Linux中vim系列】如何在vim中检索字符串

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

1.2 编译型语言和解释型语言的区别

编译型语言和解释型语言的区别 通过高级语言编写的源码&#xff0c;我们能够轻松理解&#xff0c;但对于计算机来说&#xff0c;它只认识二进制指令&#xff0c;源码就是天书&#xff0c;根本无法识别。源码要想执行&#xff0c;必须先转换成二进制指令。 所谓二进制指令&…

elment-ui el-tabs组件 每次点击后 created方法都会执行2次

先看错误的 日志打印: 错误的代码如下: 正确的日志打印: 正确的代码如下: 前言: 在element-ui的tabs组件中,我们发现每次切换页面,所有的子组件都会重新渲染一次。当子页面需要发送数据请求并且子页面过多时,这样会过多的占用网络资源。这里我们可以使用 v-if 来进行…

Oh My Bug || PHPmyAdmin导入csv文件时,502报错

解决&#xff1a; 在宝塔面板文件配置中加入一下代码 location / { proxy_pass http://localhost:888; } location /backend-api { rewrite ^/backend-api(.*)$ $1 break; proxy_pass http://你的ip地址; }

判断出栈顺序是否满足入栈顺序

在学习数据结构的过程中,使用代码实现算法有利于加深理解 下面思路过程以及代码 0.先给出各个变量名字以及作用 1.函数 //match是具体的匹配函数&#xff1b;input是输入的顺序&#xff1b;output是输出的顺序 void match(string& input, string& output); 2.函数内部…

基于python+vue发艺美发店管理系统flask-django-php-nodejs

目 录 摘 要 I Abstract II 1 绪 论 1 1.1 研究背景 1 1.2 研究意义 2 1.3 主要内容 2 2系统相关技术概述 4 2.1开发工具 4 2.2 python语言简介 4 2.4 django框架介绍 5 2.5 MySQL数据库技术简介 6 3 发艺美发店管理系统的设计 7 3.1系统可行性分析 7 3.1.1技术可行性 8 3.1.2…

出现nginx error 问题

报错&#xff1a; Something has triggered an error on your website. This is the default error page for nginx that is distributed with Fedora. It is located /usr/share/nginx/html/50x.html You should customize this error page for your own site or edit the er…

【史上最全面arduino esp32教程】SPI层次结构SPI协议与SPI控制器结构

文章目录 前言一、SPI 程序层次1.1 硬件原理图1.2 硬件框图1.3 软件层次 二、SPI协议2.1 硬件连线2.2 如何访问SPI设备2.3 SPI 框图 总结 前言 欢迎阅读本篇文章&#xff0c;将为您介绍Arduino ESP32上的SPI通信协议。SPI&#xff08;Serial Peripheral Interface&#xff09;…

鸿蒙开发案例:【图像加载缓存库ImageKnife】

专门为OpenHarmony打造的一款图像加载缓存库&#xff0c;致力于更高效、更轻便、更简单。 简介 OpenHarmony的自研版本&#xff1a; 支持内存缓存&#xff0c;使用LRUCache算法&#xff0c;对图片数据进行内存缓存。支持磁盘缓存&#xff0c;对于下载图片会保存一份至磁盘当…

新材料正在加速金属3D打印的应用步伐

在金属3D打印领域&#xff0c;材料性能是影响工件综合表现的关键因素&#xff0c;如强度、硬度、耐腐蚀性、抛光性能以及导热性能等&#xff0c;都与材料息息相关&#xff0c;好的材料是推动金属3D打印向更多领域应用的基础。 在这一背景下&#xff0c;上海毅速新材料推出的多款…