目录
1143 最长公共子序列
1035 不相交的线
53 最大子序和 动态规划
1143 最长公共子序列
class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));for(int i = 1; i <= text1.size(); i++){for(int j = 1; j <= text2.size(); j++){if(text1[i-1] == text2[j-1]){dp[i][j] = dp[i-1][j-1] + 1;}else{dp[i][j] = max(dp[i-1][j], dp[i][j-1]);}}}return dp[text1.size()][text2.size()];}
};
1035 不相交的线
class Solution {
public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1, 0));for(int i = 1; i <= nums1.size(); i++){for(int j = 1; j <= nums2.size(); j++){if(nums1[i-1] == nums2[j-1]){dp[i][j] = dp[i-1][j-1] + 1;}else{dp[i][j] = max(dp[i-1][j], dp[i][j-1]);}}}return dp[nums1.size()][nums2.size()];}
};
53 最大子序和 动态规划
class Solution {
public:int maxSubArray(vector<int>& nums) {if(nums.size() == 1) return nums[0];//表示以i为结尾的最大字序列的和vector<int> dp(nums.size() + 1, 0);dp[0] = nums[0];int result = nums[0];for(int i = 1; i < nums.size(); i++){dp[i] = max(nums[i], dp[i-1] + nums[i]);result = max(result, dp[i]);}return result;}
};