【STM32嵌入式系统设计与开发】——8usart(串口通讯实验)

这里写目录标题

  • 一、任务描述
  • 二、任务实施
    • 1、ActiveBeep工程文件夹创建
    • 2、函数编辑
      • (1)主函数编辑
      • (2)USART1初始化函数(usart1_init())
      • (3)USART数据发送函数( USART1_Send_Data())
      • (4)USART数据发送函数( USART1_IRQHandler())
    • 3、宏定义
    • 4、知识链接
      • (1)USART的基本原理
      • (3)USART与其他通信的区别
    • 5、工程测试


STM32资料包:
百度网盘下载链接:链接:https://pan.baidu.com/s/1mWx9Asaipk-2z9HY17wYXQ?pwd=8888
提取码:8888


一、任务描述

在这里插入图片描述

二、任务实施

观察电路图:
TXD(底板) ————————> PA10
RXD(底板) ————————> PA9
使用USB-AB型数据线,连接15核心板USB口,串口发送接收到的数据。在这里插入图片描述

1、ActiveBeep工程文件夹创建

步骤1:复制工程模板“1_Template”重命名为“6_Usart”。
在这里插入图片描述

步骤2:修改项目工程名,先删除projects文件夹内除了Template.uvprojx文件外的所有内容并修改为“Usart.uvprojx”。并删除output/obj和output/lst中的所有文件。
在这里插入图片描述

步骤3:运行“Usart.uvprojx”打开目标选项“Options for Target”中的“Output”输出文件,并修改可执行文件名称为“Usart”点击“OK”保存设置。最后点击“Rebuild”编译该工程生成Usart文件。
在这里插入图片描述

步骤4:复制“2_LEDTest”中的"1_LED"文件复制到hardware中。
在这里插入图片描述
步骤6:工程组文件中添加“led.c”和“ActiveBeep.c”文件。
在这里插入图片描述

步骤7:目标选项添加添加头文件路径。
在这里插入图片描述

2、函数编辑

(1)主函数编辑

连接15核心板USB口,串口发送接收到的数据,串口助手发送一段数据帧,判断数据帧后返回相应数据。
在这里插入图片描述

步骤1:端口初始化准备

	//函数初始化,端口准备delay_init();               //启动滴答定时器usart1_init(9600);          //USART1初始化ExpLEDInit();               //LED端口初始化

在这里插入图片描述

步骤2:循环时延迟的时间会逐渐增加,直到 temp 达到 200,然后重新从 10 开始。这样就会产生一种周期性变化的效果,蜂鸣器和 LED 会以不同的频率闪烁。

	while(1){	 // 如果串口接收状态为SETif (USART_DataTypeStr.Usart_Rc_State == SET) {// 将串口接收状态复位USART_DataTypeStr.Usart_Rc_State = RESET;// 发送串口接收到的数据USART1_Send_Data(USART_DataTypeStr.Usart_Rx_Data, USART_DataTypeStr.Usart_Rx_Len);}}	

在这里插入图片描述

(2)USART1初始化函数(usart1_init())

配置了 PA9 为复用推挽输出,用于 USART1 的 TXD,并配置了 PA10 为浮空输入,用于 USART1 的 RXD。并配置了 USART1 的参数,包括波特率、数据位长度、停止位数、校验位、硬件流控制和工作模式。

/*********************************************************************@Function  : USART1初始化@Parameter : bound : 波特率 @Return    : N/A
**********************************************************************/   	
void usart1_init(uint32_t bound)
{GPIO_InitTypeDef GPIO_InitStructure;             								 // 定义 GPIO 初始化结构体USART_InitTypeDef USART_InitStructure;            								 // 定义 USART 初始化结构体NVIC_InitTypeDef NVIC_InitStructure;              								 // 定义 NVIC 初始化结构体/* 时钟使能:启用 USART1 和 GPIOA 的时钟 */RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);/* 引脚复用配置 */  // 配置 PA9 为复用推挽输出,用于 USART1 的 TXDGPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;       								// 设置 GPIO 端口GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;                               // 设置 GPIO 速度GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; 								// 设置 GPIO 模式为复用推挽GPIO_Init(GPIOA, &GPIO_InitStructure);          							    // 初始化 GPIO// 配置 PA10 为浮空输入,用于 USART1 的 RXDGPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;                                      // 设置 GPIO 端口GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;                           // 设置 GPIO 模式为浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);                                          // 初始化 GPIO/* NVIC 中断配置 */ NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;                               // 设置中断通道为 USART1NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;                       // 设置抢占优先级为3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;                              // 设置子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                                 // 使能中断通道NVIC_Init(&NVIC_InitStructure);                                                 // 初始化 NVIC/* USART1 配置 */ USART_InitStructure.USART_BaudRate = bound;                                     // 设置波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;                     // 设置数据位长度为8位USART_InitStructure.USART_StopBits = USART_StopBits_1;                          // 设置停止位为1位USART_InitStructure.USART_Parity = USART_Parity_No;                             // 设置校验位为无校验USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 设置硬件流控制为无USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;                 // 设置工作模式为接收和发送USART_Init(USART1, &USART_InitStructure);                                       // 初始化 USART1/* 中断配置 */// USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); // 开启接收中断USART_Cmd(USART1, ENABLE);                                                      // 启用 USART1
}

在这里插入图片描述

(3)USART数据发送函数( USART1_Send_Data())

初始化PD14端口,并为推挽输出。

/*********************************************************************@Function  : USART数据发送函数@Parameter : Data 	 :要发送的数据缓存.Lenth  :发送长度@Return    : 发送状态   1 :失败   0 :成功
**********************************************************************/
char USART1_Send_Data(char* Data,uint8_t Lenth) 
{uint8_t uNum = 0;if(USART_DataTypeStr.Usart_Tc_State == 1)                       //判断发送标志位是否置1{USART_DataTypeStr.Usart_Tc_State = 0;                       //将发送标志位清零,表示数据已经成功放入缓存,等待发送USART_DataTypeStr.Usart_Tx_Len = Lenth;                     //获取需要发送的数据的长度       for(uNum = 0;uNum < USART_DataTypeStr.Usart_Tx_Len;uNum ++)   //将需要发送的数据放入发送缓存{USART_DataTypeStr.Usart_Tx_Buffer[uNum] = Data[uNum];}USART_ITConfig(USART1,USART_IT_TXE,ENABLE);			            //数据放入缓存后打开发送中断,数据自动发送}return USART_DataTypeStr.Usart_Tc_State;                        //返回放数据的状态值,为1表示发送失败,为0表示发送成功了
}

在这里插入图片描述

(4)USART数据发送函数( USART1_IRQHandler())

void USART1_IRQHandler(void)                
{uint8_t Clear = Clear;                                                         // 定义清除标志的变量,并初始化为自身static uint8_t uNum = 0;                                                        // 静态变量,用于循环计数if(USART_GetITStatus(USART1,USART_IT_RXNE) != RESET)  // 判断读数据寄存器是否为非空{USART_ClearFlag(USART1, USART_IT_RXNE);                                       // 清零读数据寄存器,其实硬件也可以自动清零USART_DataTypeStr.Usart_Rx_Buffer[USART_DataTypeStr.Usart_Rx_Num ++] = \(uint16_t)(USART1->DR & 0x01FF);                                              // 将接收到的数据存入接收缓冲区(USART_DataTypeStr.Usart_Rx_Num) &= 0xFF;                                     // 防止缓冲区溢出} else if(USART_GetITStatus(USART1,USART_IT_IDLE) != RESET)   // 检测空闲{Clear = USART1 -> SR;                                                                 // 读SR位Clear = USART1 -> DR;                                                                 // 读DR位,USART_DataTypeStr.Usart_Rx_Len = USART_DataTypeStr.Usart_Rx_Num;                      // 获取数据长度for(uNum = 0; uNum < USART_DataTypeStr.Usart_Rx_Len; uNum ++)          {USART_DataTypeStr.Usart_Rx_Data[uNum] = USART_DataTypeStr.Usart_Rx_Buffer[uNum];  // 将接收到的数据复制到接收数据缓冲区}USART_DataTypeStr.Usart_Rx_Num = 0;                                                   // 清空接收计数器USART_DataTypeStr.Usart_Rc_State = 1;                                                 // 数据读取标志位置1,读取串口数据}if(USART_GetITStatus(USART1,USART_IT_TXE) != RESET) // 判断发送寄存器是否为非空{USART1->DR = \((USART_DataTypeStr.Usart_Tx_Buffer[USART_DataTypeStr.Usart_Tx_Num ++]) & (uint16_t)0x01FF);  // 发送数据(USART_DataTypeStr.Usart_Tx_Num) &= 0xFF;                                                     // 防止缓冲区溢出if(USART_DataTypeStr.Usart_Tx_Num >= USART_DataTypeStr.Usart_Tx_Len){   USART_ITConfig(USART1,USART_IT_TXE,DISABLE);                                                // 发送完数据,关闭发送中断USART_DataTypeStr.Usart_Tx_Num = 0;                                                         // 清空发送计数器USART_DataTypeStr.Usart_Tc_State = 1;                                                       // 发送标志置1,可以继续发送数据了} 		}
}

在这里插入图片描述

3、宏定义

步骤2:主函数添加所需的led和KeyBoard头文件,主源文件部分报错消失

/***********Hardweare***************/
#include "led.h"

在这里插入图片描述

步骤2:添加宏定义

#define USART_RX_LEN  200               // 接收缓冲区最大长度
#define USART_TX_LEN  200               // 发送缓冲区最大长度
#define UART_NUM      10                // 串口结构体最大对象数量

在这里插入图片描述

步骤3:添加led宏定义

#define LED_ALL GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7

在这里插入图片描述
步骤3:添加函数声明

void usart1_init(uint32_t bound);
extern USART_DataTypeDef USART_DataTypeStr; 
char USART1_Send_Data(char* Data,uint8_t Lenth);

在这里插入图片描述

步骤4:添加数据类型和宏的头文件

//定义串口数据结构体
typedef struct USART_DataType 
{uint8_t Usart_Rx_Len;          // 接收缓冲区长度uint8_t Usart_Tx_Len;          // 发送缓冲区长度uint8_t Usart_Rx_Num;          // 接收数据计数uint8_t Usart_Tx_Num;          // 发送数据计数uint8_t Usart_Rc_State;        // 接收状态标志位uint8_t Usart_Tc_State;        // 发送状态标志位char Usart_Rx_Buffer[USART_RX_LEN]; // 接收缓冲区char Usart_Tx_Buffer[USART_TX_LEN]; // 发送缓冲区char Usart_Rx_Data[USART_RX_LEN];   // 接收数据char Usart_Tx_Data[USART_TX_LEN];   // 发送数据
} USART_DataTypeDef;

在这里插入图片描述

4、知识链接

(1)USART的基本原理

在这里插入图片描述
USART是STM32内部集成的硬件外设,可根据数据寄存器的一个字节数据自动生成数据帧时序,从TX引脚发送出去,也可自动接收RX引脚的数据帧时序,拼接为一个字节数据,存放在数据寄存器里

(3)USART与其他通信的区别

通信接口在嵌入式系统中具有不同的特点和应用场景,可以根据具体的需求选择合适的接口,以实现数据通信、存储、外设连接等功能。
在这里插入图片描述

5、工程测试

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/760896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Tempo Talents | 创新专业建设方案,赋能高校4+N大数据学科人才培养

数字经济成为国家战略&#xff0c;是新一轮的经济发展引擎&#xff0c;数字人才、复合型人才成为发展的关键和核心要素。各级政府、区域开始以区域产业为导向&#xff0c;培育、聚集产业所需的数智化人才。 高校作为人才培养的重要基地&#xff0c;也发挥着不可或缺的作用。他…

Linux系统之安装java开发环境

1 java简介 Java 是由 Sun Microsystems 公司于 1995 年 5 月推出的 Java 面向对象程序设计语言和 Java 平台的总称。由 James Gosling和同事们共同研发&#xff0c;并在 1995 年正式推出&#xff0c;后来 Sun 公司被 Oracle &#xff08;甲骨文&#xff09;公司收购&#xff…

Linux进程控制(一)

一、fork函数 在linux中&#xff0c;父进程通过fork函数创建子进程&#xff0c;子进程返回0&#xff0c;父进程返回子进程的pid&#xff0c;出现错误返回-1。 当运行fork函数时&#xff0c;OS会为子进程创建task_struct、mm_struct&#xff08;进程地址空间&#xff09;、页表&…

C语言实现高精度计时和高精度延时微秒级别

C语言实现高精度计时和高精度延时微秒级别 目的说明环境说明一、高精度延时(微秒级别)二、测试例程三、测试结果 目的说明 在Windows下C语言实现高精度计时功能和高精度延时微秒级别环境说明 Dev-C V5.11一、高精度延时(微秒级别) void vDelayUS(u32 usDelay) {LARGE_INTEGER…

C语言例:表达式10<<3+1的值

10的二进制 00001010 10<<3 01010000 十制左移m位&#xff0c;乘以。 0101 0000 十进制80 10<<31 81

Day75:WEB攻防-验证码安全篇接口滥用识别插件复用绕过宏命令填入滑块类

目录 图片验证码-识别插件-登录爆破&接口枚举 登录爆破 接口枚举 图片验证码-重复使用-某APP短信接口滥用 滑块验证码-宏命令-某Token&Sign&滑块案例 知识点&#xff1a; 1、验证码简单机制-验证码过于简单可爆破 2、验证码重复使用-验证码验证机制可绕过 3、…

突破编程_C++_C++11新特性(完美转发 forward)

1 完美转发的概念 C11 中引入的完美转发&#xff08;Perfect Forwarding&#xff09;是一种强大的编程技巧&#xff0c;它允许在编写泛型函数时保留参数的类型和值类别&#xff08;即左值或右值&#xff09;&#xff0c;从而实现更为高效且准确地传递参数。这种技巧在编写包装…

在springboot中利用Redis实现延迟队列

文章目录 前言一、基本思路二、springboot实现案例三、测试总结 前言 在开发过程中&#xff0c;有很多场景都需要用到延迟队列来解决。目前支持延迟队列的中间件也不少&#xff0c;特别是基于JMS模式下的消息中间件基本上都支持延迟队列。但是有时我们项目规模可能比较小&…

浅谈Spring框架

一、什么是Spring&#xff1f; Spring是一个开源框架&#xff0c;可以降低开发复杂度&#xff0c;提高开发效率&#xff0c;轻量级低耦合的框架。由于Spring的分层架构&#xff0c;可以自己选择整合其他组件&#xff0c;灵活性高 二、什么是IOC&#xff1f; IOC 叫做控制反转&…

如何在 Java 中造成内存泄漏?

如何在 Java 中造成内存泄漏&#xff1f; 应用程序创建一个长时间运行的线程&#xff08;或使用线程池来更快地泄漏&#xff09;。线程通过&#xff08;可选自定义&#xff09;加载类ClassLoader。该类分配一大块内存&#xff08;例如new byte[1000000]&#xff09;&#xff0…

Python PEP 8 代码风格指南

Python PEP 8 代码风格指南 0. 引言1. 空白字符2. 命名3. 表达式和语句4. 导入5. Pylint工具6. 要点总结 0. 引言 Python增强提案#8,也称作 PEP 8,是关于如何格式化Python代码的风格指南。 你可以按自己的方式编写Python代码,只要符合有效的语法规则。 然而,使用一致的风格可…

运维篇SHELL脚本实战案例

统计出每个IP的访问量有多少&#xff1f; 检查是否提供了日志文件的路径作为参数。使用awk从日志文件的每行中提取第一个字段&#xff08;假设这是IP地址&#xff09;。使用sort对提取的IP地址进行排序。使用uniq -c统计每个唯一IP地址的出现次数。最后&#xff0c;使用sort -…

一次消谐器在电力系统中的作用分析

一次消谐器是一种专门用于消除电力系统中的高次谐波的装置。它通过实时监测和分析系统中的谐波成分&#xff0c;采用先进的滤波技术&#xff0c;将谐波分量从系统中滤除&#xff0c;从而保持电力系统的稳定运行。 一次消谐器的主要作用体现在以下几个方面&#xff1a; 1. 保护电…

复习斐波那契(用C++写)

或者这样写&#xff1a; 斐波那契数列 题目描述 斐波那契数列是指这样的数列&#xff1a;数列的第一个和第二个数都为 1 1 1&#xff0c;接下来每个数都等于前面 2 2 2 个数之和。 给出一个正整数 a a a&#xff0c;要求斐波那契数列中第 a a a 个数是多少。 输入格式…

Java基础---IO流

1. File类 1.1 File的介绍 File是java.io.包下的类&#xff0c; File类的对象&#xff0c;用于代表当前操作系统的文件&#xff08;可以是文件、或文件夹&#xff09;。 注意&#xff1a;File类只能对文件本身进行操作&#xff0c;不能读写文件里面存储的数据。 1.2 File类…

Python模块-基础知识

Python模块-基础知识 1.模块分类&#xff1a; &#xff08;1&#xff09;自定义模块&#xff1a; 如果你自己写一个py文件&#xff0c;在文件内写入一堆函数&#xff0c;则它被称为自定义模块&#xff0c;即使用python编写的.py文件 &#xff08;2&#xff09;第三方模块&…

python初始化二维数据

1.遇到的问题 突然不知道什么原因&#xff0c;想起来实现一个矩阵的乘法&#xff0c;于是用python代码实现一下。 def matrix_multiply():a [[1, 2], [3, 4]]b [[5, 6, 7], [8, 9, 10]]m, n len(a[0]), len(b)if m ! n:print(we need a column equal b row!)m, t len(a),…

javaSE练习题(一)

1、BMI是根据体重测量健康的方式。通过以千克为单位的体重除以以米为单位的身高的平方计算出BMI。下面是16 岁以上人群的BMI图表: 编写一个java程序&#xff0c;提示用户输人以磅为单位的体重和以英寸为单位的身高&#xff0c;然后显示BMI值。注意: 1磅是0.453592 37千克而1英寸…

【工具类】adb常用命令

1. adb常用命令 1. adb常用命令 1.1. 常用命令1.2. 命令解析1.3. 参考资料 为了描述方便&#xff0c;假设需要通过 adb 操作 android 系统&#xff0c;本机是 ubuntu 系统 1.1. 常用命令 上传下载&#xff0c;/data/log 目录是手机上的目录&#xff0c;~/Downloads/log 是…

9大变频电源模块的测试参数及其重要性

变频电源是将交流电经过交流-直流-交流变换&#xff0c;从而得到输出为正弦波的交流电&#xff0c;广泛应用于家电、电机、电脑设备、测试单位、航空等领域。变频电源测试是确保系统稳定运行的重要步骤。 变频电源测试的重要参数 1. 输出电压和电流 可用万用表、电流表或者示波…