python爬虫基础实验:通过DBLP数据库获取数据挖掘顶会KDD在2023年的论文收录和相关作者信息

Task1

在这里插入图片描述

读取网站主页整个页面的 html 内容并解码为文本串(可使用urllib.request的相应方法),将其以UTF-8编码格式写入page.txt文件。

Code1

import urllib.requestwith urllib.request.urlopen('https://dblp.dagstuhl.de/db/conf/kdd/kdd2023.html') as response:html = response.read()html_text = html.decode()with open('page.txt','w',encoding='utf-8') as f:f.write(html_text)

Task2

打开page.txt文件,观察 Track 名称、论文标题等关键元素的组成规律。从这个文本串中提取各Track 的名称并输出(可利用字符串类型的split()和strip()方法)。

Code2

import rewith open('page.txt', 'r', encoding='utf-8') as f:content = f.read()# 使用正则表达式找到所有的 <h2 id="*"> 和 </h2> 之间的字符串
matches = re.findall(r'<h2 id=".*?">(.*?)</h2>', content)for match in matches:print(match)

Task3

可以看到, “Research Track Full Papers” 和 “Applied Data Track Full Papers” 中的论文占据了绝大多数,现欲提取这两个 Track 下的所有论文信息(包含作者列表authors、论文标题title、收录起始页startPage与终止页endPage),并按照以下格式存储到一个字典列表中,同时输出这两个 Track 各自包含的论文数量,然后把字典列表转化为 json 对象(可使用json包的相应方法),并以 2 字符缩进的方式写入kdd23.json文件中。

[{"track": "Research Track Full Papers","papers": [{"authors": ["Florian Adriaens","Honglian Wang","Aristides Gionis"],"title": "Minimizing Hitting Time between Disparate Groups with Shortcut Edges.","startPage": "1","endPage": "10"},...]}{"track": "Applied Data Track Full Papers","papers": [{"authors": ["Florian Adriaens","Honglian Wang","Aristides Gionis"],"title": "Minimizing Hitting Time between Disparate Groups with Shortcut Edges.","startPage": "1","endPage": "10"},...]}
]

Code3

import re
import jsonwith open('page.txt', 'r', encoding='utf-8') as f:content = f.read()# 定义一个列表来存储 Track 信息
tracks = []# 定义正则表达式
track_pattern = re.compile(r'<h2 id=".*?">(.*?)</h2>')
author_pattern = re.compile(r'<span itemprop="name" title=".*?">(.*?)</span>')
title_pattern = re.compile(r'<span class="title" itemprop="name">(.*?)</span>')
page_pattern = re.compile(r'<span itemprop="pagination">(.*?)-(.*?)</span>')# 找到 "Research Track Full Papers" 和 "Applied Data Science Track Full Papers" 的位置
start1 = content.find('Research Track Full Papers') - 50
start2 = content.find('Applied Data Track Full Papers') - 50
start3 = content.find('Hands On Tutorials') - 1
end = len(content)# 从整篇文本中划分出前两个Track中所有相邻"<cite"和"</cite>"之间的内容(即一篇文章的范围)
research_papers_content = re.split('<cite', content[start1:start2])[1:]
applied_papers_content = re.split('<cite', content[start2:start3])[1:]def extract_paper_info(papers_content):papers = []for paper_content in papers_content:paper_content = re.split('</cite>', paper_content)[0]papers.append(paper_content)return papersspit_research_content = extract_paper_info(research_papers_content)
spit_applied_content = extract_paper_info(applied_papers_content)# 提取每篇paper的author、title和startPage, endPage
def extract_paper_info(papers_content):papers = []for paper_content in papers_content:authors = author_pattern.findall(paper_content)titles = title_pattern.findall(paper_content)pages = page_pattern.search(paper_content)startPage, endPage = pages.groups()papers.extend([{'authors': authors, 'title': title , 'startPage': startPage , 'endPage': endPage} for title in titles])return papers# 提取 "Research Track Full Papers" 的论文信息
research_track = track_pattern.search(content[start1:start2]).group(1)
research_papers = extract_paper_info(spit_research_content)# 提取 "Applied Data Science Track Full Papers" 的论文信息
applied_track = track_pattern.search(content[start2:start3]).group(1)
#applied_papers = extract_paper_info(spit_applied_content)
applied_papers = extract_paper_info(spit_applied_content)
# 将论文信息存储到字典列表中
tracks.append({'track': research_track, 'papers': research_papers})
tracks.append({'track': applied_track, 'papers': applied_papers})# 将字典列表转换为 JSON 并写入文件
with open('kdd23.json', 'w', encoding='utf-8') as f:json.dump(tracks, f, indent=2)

Task4

基于之前爬取的页面文本,分别针对这两个 Track 前 10 篇论文的所有相关作者,爬取他们的以下信息:(1)该研究者的学术标识符orcID(有多个则全部爬取);(2)该研究者从 2020 年至今发表的所有论文信息(包含作者authors、标题title、收录信息publishInfo和年份year)。将最终结果转化为 json 对象,并以 2 字符缩进的方式写入researchers.json文件中,相应存储格式为:

[{"researcher": "Florian Adriaens","orcID": ["0000-0001-7820-6883"],"papers": [{"authors": ["Florian Adriaens","Honglian Wang","Aristides Gionis"],"title": "Minimizing Hitting Time between Disparate Groups with Shortcut Edges.","publishInfo": "KDD 2023: 1-10","year": 2023},...]},...
]   

Code4

import re
import requests
import json
import time
import random# 打开并读取 "page.txt" 文件
with open('page.txt', 'r', encoding='utf-8') as f:content = f.read()# 定义正则表达式
author_link_pattern = re.compile(r'<span itemprop="author" itemscope itemtype="http://schema.org/Person"><a href="(.*?)" itemprop="url">')
orcID_pattern = re.compile(r'<img alt="" src="https://dblp.dagstuhl.de/img/orcid.dark.16x16.png" class="icon">(.{19})</a></li>')
researcher_pattern = re.compile(r'<head><meta charset="UTF-8"><title>dblp: (.*?)</title>')
year_pattern = re.compile(r'<span itemprop="datePublished">(.*?)</span>')# 找到 "Research Track Full Papers" 和 "Applied Data Track Full Papers" 的位置
start1 = content.find('Research Track Full Papers')
start2 = content.find('Applied Data Track Full Papers')
end = len(content)# 提取这两个部分的内容,并找到前 10 个 "persistent URL:" 之间的内容
research_papers_content = content[start1:start2].split('<cite')[1:11]
applied_papers_content = content[start2:end].split('<cite')[1:11]def extract_paper_info(papers_content):papers = []for paper_content in papers_content:paper_content = re.split('</cite>', paper_content)[0]papers.append(paper_content)return papersspit_research_content = extract_paper_info(research_papers_content)
spit_applied_content = extract_paper_info(applied_papers_content)def extract_paper_info2(paper_content):final_result = []# 使用正则表达式找到所有在 "<>" 之外的字符串outside_brackets = re.split(r'<[^>]*>', paper_content)# 遍历提取到的内容,删除含有'http'的字符串及其前面的字符串flag = -1for i in range(len(outside_brackets)):if 'http' in outside_brackets[i]:flag = ifor i in range(flag + 1 , len(outside_brackets)):if outside_brackets[i]:final_result.append(outside_brackets[i])return final_result# 定义一个列表来存储研究者信息
researchers = []# 访问每篇文章里所有作者的链接,获取作者的 orcID 和论文信息
for papers in [research_papers_content, applied_papers_content]:for paper in papers:author_links = author_link_pattern.findall(paper)for link in author_links:link_content = requests.get(link)response = link_content.text#爬虫时频繁请求服务器,可能会被网站认定为攻击行为并报错"ConnectionResetError: [WinError 10054] 远程主机强迫关闭了一个现有的连接",故采取以下两个措施#使用完后关闭响应link_content.close()  # 在各个请求之间添加随机延时等待time.sleep(random.randint(1, 3))researcher = researcher_pattern.search(response).group(1)orcID = orcID_pattern.findall(response)# 找到 "<li class="underline" title="jump to the 2020s">" 和 "<li class="underline" title="jump to the 2010s">" 之间的内容start = response.find('2020 &#8211; today')end = response.find('<header id="the2010s" class="hide-head h2">')# 提取这部分的内容,并找到所有 "</cite>" 之间的内容papers_content = response[start:end].split('</cite>')[0:-1]papers_dict = []for paper_content in papers_content:spit_content = extract_paper_info2(paper_content)year = int(year_pattern.search(paper_content).group(1))authors = []publishInfo = []for i in range(0 , len(spit_content) - 1):if spit_content[i] != ", " and (spit_content[i+1] == ", " or spit_content[i+1] == ":"):authors.append(spit_content[i])elif spit_content[i][-1] == '.':title = spit_content[i]for k in range(i+2 , len(spit_content)):publishInfo.append(spit_content[k])# 创建一个新的字典来存储每篇文章的信息paper_dict = {'authors': authors, 'title': title, 'publishInfo': ''.join(publishInfo), 'year': year}papers_dict.append(paper_dict)researchers.append({'researcher': researcher, 'orcID': orcID, 'papers': papers_dict})# 将字典列表转换为 JSON 并写入 "researchers.json" 文件
with open('researchers.json', 'w', encoding='utf-8') as f:json.dump(researchers, f, indent=2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/759123.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PyTorch 深度学习(GPT 重译)(二)

四、使用张量表示真实世界数据 本章内容包括 将现实世界的数据表示为 PyTorch 张量 处理各种数据类型 从文件加载数据 将数据转换为张量 塑造张量&#xff0c;使其可以作为神经网络模型的输入 在上一章中&#xff0c;我们了解到张量是 PyTorch 中数据的构建块。神经网络…

Excel使用VLOOKUP函数

VLOOKUP(lookup_value,table_array,col_index_num,range_lookup) 释义&#xff1a; lookup_value&#xff1a;要查找的值&#xff0c;包括数字&#xff0c;文本等 table_array&#xff1a;要查找的值以及预期返回的内容所在的区域 col_index_num&#xff1a;查找的区域的列…

微信小程序订阅消息(一次性订阅消息)

1、准备工作 登录微信公众平台–>订阅消息–>在公共模板库中选中一个模版–>将模版id复制&#xff0c;前后端都需要。 点击详情–>查看详细内容模版 复制给后端 2、相关api的使用 前端使用&#xff1a;wx.requestSubscribeMessage wx.openSetting wx.getSetti…

Gateway新一代网关

Gateway新一代网关 1、概述 ​ Cloud全家桶中有个很重要的组件就是网关&#xff0c;在1.x版本中都是采用的Zuul网关&#xff1b; ​ 但在2.x版本中&#xff0c;zuul的升级一直跳票&#xff0c;SpringCloud最后自己研发了一个网关SpringCloud Gateway替代Zuul。 ​ 官网&…

ubuntu部署wireguard服务端,ubuntu部署wireguard客户端

docker部署方式 docker run -d \--namewg-easy \-e WG_HOST6.6.6.6服务端IP \-e PASSWORD123abc登陆管理密码 \-e WG_DEFAULT_ADDRESS10.0.8.x客户端 IP 地址范围 \-e WG_DEFAULT_DNS1.1.1.1配置dns \-e WG_ALLOWED_IPS10.0.8.0/24 \-e WG_PERSISTENT_KEEPALIVE25 \-v ~/.wg-e…

uniapp、vue2.6、H5,利用腾讯TRTC,快速跑通1v1视频功能

多人视频聊天室搭建&#xff0c;官网已有相关demo和案例&#xff0c;需要快速搭建多人聊天室直接进入以下网站&#xff1a; 实时音视频 Web & H5 (Vue2/Vue3)-视频通话&#xff08;含 UI&#xff09;-文档中心-腾讯云说明&#xff1a;https://cloud.tencent.com/document/…

北斗短报文+4G应急广播系统:全面预警灾害信息 构建安全美好乡村

建设社会主义新农村是确保小康社会宏伟目标如期实现的必然要求&#xff0c;是构建和谐社会的重要内容。针对现代农业发展的要求&#xff0c;通过完善专业化监测预报技术&#xff0c;提高精细化的灾害监测预警能力&#xff0c;建设广覆盖的预警信息发布网络&#xff0c;建设有效…

练习 9 Web [SUCTF 2019]CheckIn (未拿到flag)

上传图片格式的木马文件&#xff1a; 返回 <? in contents!,存在PHP代码检测 上传非图片格式文件&#xff1a; 返回 不允许非image 修改木马PHP代码规避检测 <? ?> 改为 < script language“php”>< /script ><?php eval($_POST[shell]);?>…

PyTorch 深度学习(GPT 重译)(四)

第二部分&#xff1a;从现实世界的图像中学习&#xff1a;肺癌的早期检测 第 2 部分的结构与第 1 部分不同&#xff1b;它几乎是一本书中的一本书。我们将以几章的篇幅深入探讨一个单一用例&#xff0c;从第 1 部分学到的基本构建模块开始&#xff0c;构建一个比我们迄今为止看…

酷炫的粒子动态表白HTML源码

源码介绍 酷炫的粒子动态表白HTML源码&#xff0c;自己自定义文字&#xff0c;动态组合文字&#xff0c;进行表白&#xff0c;喜欢的朋友可以下载使用&#xff0c;很不错的表白HTML代码 下载地址 酷炫的粒子动态表白HTML源码

【论文阅读】通过组件对齐评估和改进 text-to-SQL 的组合泛化

Measuring and Improving Compositional Generalization in Text-to-SQL via Component Alignment NAACL 2022| CCF B Abstract 在 text-to-SQL 任务中&#xff0c;正如在许多 NLP 中一样&#xff0c;组合泛化是一个重大挑战&#xff1a;神经网络在训练和测试分布不同的情况…

2024 Python3.10 系统入门+进阶(二):Python编程环境搭建

目录 一、Windows安装Python1.1 下载并安装 Python1.2 测试安装是否成功 二、Linux系统安装Python(新手可以跳过)2.1 基于RockyLinux系统安装Python(编译安装)2.2 基于Ubuntu系统安装Python(编译安装) 三、如何运行Python程序&#xff1f;3.1 Python 交互式编程3.2 编写Python源…

GB28181 —— 5、C++编写GB28181设备端,完成将USB摄像头视频实时转发至GB28181服务并可播放(附源码)

被测试的USB摄像头 效果 源码说明 主要功能模拟设备端&#xff0c;完成注册、注销、心跳等&#xff0c;同时当服务端下发指令播放视频时 设备端实时读取USB摄像头视频并通过OpenCV处理后实时转ps格式后封包rtp进行推送给服务端播放。 源码 /****remark: pes头的封装,里面的具…

开发环境配置本地hosts修改域名

一、找到hosts文件的位置&#xff1a; 方法一&#xff1a;windows系统下&#xff0c;直接 WinR 键输入&#xff1a; C:\WINDOWS\system32\drivers\etc 如图所示&#xff1a;输入完后点击确认 方法二&#xff1a;直接按照路径 C:\WINDOWS\system32\drivers\etc 去找 如图所示…

Opencv | 图像基础知识

目录 一. 图像基础知识1. 颜色空间1.1 RGB颜色空间1.2 HSV颜色空间1.3 CMY(K)颜色空间 (了解) 2. 颜色图2.1 RGB三通道彩色图2.1.1 RGB图片数据格式 2.2 单通道灰度图 一. 图像基础知识 1. 颜色空间 1.1 RGB颜色空间 加法混色&#xff0c;彩色显示器 3通道&#xff1a;Red通道…

ASP.NET-Global.asax使用详解

本文介绍了如何使用Global.asax文件来增强ASP.NET Web应用程序的功能。首先&#xff0c;介绍了Global.asax文件的作用和基本功能。接着&#xff0c;详细探讨了在Global.asax中实现定时任务、应用程序级别的错误处理、应用程序启动和结束时执行特定逻辑等功能。随后&#xff0c;…

QGIS编译(跨平台编译)056:PDAL编译(Windows、Linux、MacOS环境下编译)

点击查看专栏目录 文章目录 1、PDAL介绍2、PDAL下载3、Windows下编译4、linux下编译5、MacOS下编译1、PDAL介绍 PDAL(Point Data Abstraction Library)是一个开源的地理空间数据处理库,它专注于点云数据的获取、处理和分析。PDAL 提供了丰富的工具和库,用于处理激光扫描仪、…

ping 通ip,ping 不通域名

在linux 系统中&#xff0c;ping 通ip,ping 不通对应的域名时&#xff0c;可直接修改系统配置文件 vi /etc/hosts 加入 ip 域名

JavaScript 使用 Promise 实现 sleep 休眠

以下为代码实现&#xff0c;该代码实现了每隔1秒打印一次当前时间&#xff0c;总共打印5次的功能 for(let i 1; i < 5; i){console.log(new Date().toString())await new Promise(resolve>setTimeout(resolve,1000)) }实现休眠的核心代码为: await new Promise(resolv…

uniapp使用Canvas给图片加水印把临时文件上传到服务器

生成的临时路径是没有完整的路径没办法上传到服务器 16:37:40.993 添加水印后的路径, _doc/uniapp_temp_1710923708347/canvas/17109238597881.png 16:37:41.041 添加水印后的完整路径, file://storage/emulated/0/Android/data/com.jingruan.zjd/apps/__UNI__BE4B000/doc/…