YOLOv7 | 添加GSConv,VoVGSCSP等多种卷积,有效提升目标检测效果,代码改进(超详细)

⭐欢迎大家订阅我的专栏一起学习⭐

🚀🚀🚀订阅专栏,更新及时查看不迷路🚀🚀🚀
       YOLOv5涨点专栏:http://t.csdnimg.cn/QdCj6

YOLOv7专栏: http://t.csdnimg.cn/dygOj

YOLOv8涨点专栏:http://t.csdnimg.cn/Avu8g

                    💡魔改网络、复现论文、优化创新💡                

目录

主要想法

GSConv

GSConv代码实现 

 slim-neck

  slim-neck代码实现

yaml文件

完整代码分享

总结


目标检测是计算机视觉中重要的下游任务。对于车载边缘计算平台来说,巨大的模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的精度。我们引入了一种新的轻量级卷积技术 GSConv,以减轻模型重量但保持准确性。 GSConv 在模型的准确性和速度之间实现了出色的权衡。并且,我们提供了一种设计范例,细颈,以实现探测器更高的计算成本效益。我们的方法的有效性在二十多组比较实验中得到了强有力的证明。特别是,与原始检测器相比,通过我们的方法改进的检测器获得了最先进的结果(例如,在公开数据集的Tesla T4 GPU 上以100FPS 的速度获得 70.9% mAP0.5)。

 主要想法

生物大脑处理信息的强大能力和低能耗远远超出了计算机。简单地无休止地增加模型参数的数量并不能建立强大的模型。轻量化设计可以有效缓解现阶段高昂的计算成本。这个目的主要是通过深度可分离卷积(DSC)运算来减少参数量和浮点运算(FLOP)来实现的,效果很明显。然而DSC的缺点也很明显:在计算过程中输入图像的通道信息被分离。这一缺陷导致 DSC 的特征提取和融合能力比标准卷积 (SC) 低得多。

SC(左) 和 DSC(右) 的计算过程。 SC是通道密集卷积计算,DSC是通道稀疏卷积计算。

GSConv

尽管DSC有一定的优点,但DSC 的缺陷在主干中直接被放大,无论是用于图像分类还是检测。我们相信SC和DSC可以合作。我们注意到,仅通过混洗 DSC 输出通道生成的特征图仍然是“深度分离”。为了使DSC的输出尽可能接近SC,我们引入了一种新方法——SC、DSC和shuffle的混合卷积,命名为GSConv。如图所示,我们使用shuffle将SC(通道密集卷积运算)生成的信息渗透到DSC生成的信息的每个部分中。shuffle是一种统一的混合策略。该方法通过在不同通道上统一交换局部特征信息,可以将来自 SC 的信息完全混合到 DSC 的输出中,而无需任何附加功能。

GSConv 模块的结构—— “Conv”框由三层组成:卷积 2D 层、批量归一化 2D 层和激活层。这里蓝色标记的“DWConv”表示DSC操作。
GSConv代码实现 
import torch
import torch.nn as nn
import math# GSConvE test
class GSConvE(nn.Module):'''GSConv enhancement for representation learning: generate various receptive-fields andtexture-features only in one Conv modulehttps://github.com/AlanLi1997/slim-neck-by-gsconv'''def __init__(self, c1, c2, k=1, s=1, g=1, act=True):super().__init__()c_ = c2 // 4self.cv1 = Conv(c1, c_, k, s, None, g, act)self.cv2 = Conv(c_, c_, 9, 1, None, c_, act)self.cv3 = Conv(c_, c_, 13, 1, None, c_, act)self.cv4 = Conv(c_, c_, 17, 1, None, c_, act)def forward(self, x):x1 = self.cv1(x)x2 = self.cv2(x1)x3 = self.cv3(x1)x4 = self.cv4(x1)y = torch.cat((x1, x2, x3, x4), dim=1)# shuffley = y.reshape(y.shape[0], 2, y.shape[1] // 2, y.shape[2], y.shape[3])y = y.permute(0, 2, 1, 3, 4)return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])def autopad(k, p=None):  # kernel, padding# Pad to 'same'if p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# C_B_Mdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.Mish() if act else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class GSConv(nn.Module):# GSConv https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=1, s=1, g=1, act=True):super().__init__()c_ = c2 // 2self.cv1 = Conv(c1, c_, k, s, None, g, act)self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)def forward(self, x):x1 = self.cv1(x)x2 = torch.cat((x1, self.cv2(x1)), 1)# shuffley = x2.reshape(x2.shape[0], 2, x2.shape[1] // 2, x2.shape[2], x2.shape[3])y = y.permute(0, 2, 1, 3, 4)return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])class GSConvns(GSConv):# GSConv with a normative-shuffle https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=1, s=1, g=1, act=True):super().__init__(c1, c2, k=1, s=1, g=1, act=True)c_ = c2 // 2self.shuf = nn.Conv2d(c_ * 2, c2, 1, 1, 0, bias=False)def forward(self, x):x1 = self.cv1(x)x2 = torch.cat((x1, self.cv2(x1)), 1)# normative-shuffle, TRT supportedreturn nn.ReLU(self.shuf(x2))class GSBottleneck(nn.Module):# GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=3, s=1):super().__init__()c_ = c2 // 2# for lightingself.conv_lighting = nn.Sequential(GSConv(c1, c_, 1, 1),GSConv(c_, c2, 3, 1, act=False))self.shortcut = Conv(c1, c2, 1, 1, act=False)def forward(self, x):return self.conv_lighting(x) + self.shortcut(x)class DWConv(Conv):# Depth-wise convolution classdef __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groupssuper().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)class GSBottleneckC(GSBottleneck):# cheap GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=3, s=1):super().__init__(c1, c2, k, s)self.shortcut = DWConv(c1, c2, 3, 1, act=False)class VoVGSCSP(nn.Module):# VoVGSCSP module with GSBottleneckdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)# self.gc1 = GSConv(c_, c_, 1, 1)# self.gc2 = GSConv(c_, c_, 1, 1)self.gsb = GSBottleneck(c_, c_, 1, 1)self.res = Conv(c_, c_, 3, 1, act=False)self.cv3 = Conv(2*c_, c2, 1)  #def forward(self, x):x1 = self.gsb(self.cv1(x))y = self.cv2(x)return self.cv3(torch.cat((y, x1), dim=1))
 slim-neck

此外,还研究了增强 CNN 学习能力的通用方法,例如 DensNet 、VoVNet 和 CSPNet ,然后根据这些方法的理论设计 slim-neck 的结构。我们设计了细长的颈部,以降低检测器的计算复杂性和推理时间,但保持精度。 GSConv完成了降低计算复杂度的任务,而减少推理时间并保持精度的任务需要新的模型。 

GSConv的计算成本约为SC的50%(0.5+0.5C1,C1值越大,比例越接近50%),但其对模型学习能力的贡献与后者相当。基于GSConv,我们在GSConv的基础上继续引入GS瓶颈,下图(a)展示了GS瓶颈模块的结构。然后,我们使用一次性聚合方法设计跨阶段部分网络(GSCSP)模块VoV-GSCSP。图(b)(c)和(d)分别显示了我们为VoV-GSCSP提供的三种设计方案,其中(b)简单直接且推理速度更快,(c)和(d)具有功能的重用率更高。事实上,结构越简单的模块由于硬件友好而更容易被使用。下表也详细报告了VoV-GSCSP1、2、3三种结构的消融研究结果,事实上,VoVGSCSP1表现出更高的性价比。最后,我们需要灵活地使用 GSConv、GS 瓶颈和 VoV-GSCSP 这四个模块。

(a) GS瓶颈模块和(b)、(c)、(d) VoV-GSCSP1、2、3模块的结构

细颈 yolov5n 的三种不同 VoV-GSCSP 模块的比较
  slim-neck代码实现
class VoVGSCSPC(VoVGSCSP):# cheap VoVGSCSP module with GSBottleneckdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):super().__init__(c1, c2, e)c_ = int(c2 * e)  # hidden channelsself.gsb = GSBottleneckC(c_, c_, 3, 1)

代码都添加在common.py中 

yaml文件
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicle
# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, GSConv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, VoVGSCSP, [512, False]],  # 13[-1, 1, GSConv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, VoVGSCSP, [256, False]],  # 17 (P3/8-small)[-1, 1, GSConv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, VoVGSCSP, [512, False]],  # 20 (P4/16-medium)[-1, 1, GSConv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, VoVGSCSP, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]
完整代码分享

本代码结合了YOLOv7的官方仓库进行改进,实现了YOLOv7 + GSconv

完整代码链接如下:

链接: https://pan.baidu.com/s/1zQgPu1lxZ4Sm3HYiCW3awg?pwd=v4m4 提取码: v4m4 

如果执行代码出现如下面的样例则代表替换卷积模块成功。

改进后的样例,部分截图

总结

本实验引入了一种新的轻量级卷积方法 GSConv,使深度可分离卷积达到接近普通卷积的效果并且更加高效。设计了一次性聚合模块 VoV-GSCSP 来代替普通的瓶颈模块以加速推理。此外,我们还提供轻量化的细颈设计范例。在我们的实验中,与其他轻量级卷积方法相比,GSConv 显示出更好的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/757742.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

爬虫逆向sm3和sm4 加密 案例

注意!!!!某XX网站逆向实例仅作为学习案例,禁止其他个人以及团体做谋利用途!!! 案例--aHR0cDovLzExMS41Ni4xNDIuMTM6MTgwODgvc3Vic2lkeU9wZW4 第一步:分析页面和请求方式 …

spark基本原理UI界面解读

这里是引用 1 八股文 1.1 基本原理 driver节点是整个应用程序的指挥所 指挥官是sparkcontext 环境:构建一个集群 应用程序提交 确定主节点,确定指挥所driver,确定指挥官sparkcontext sparkcontext会向资源管理器申请资源 会将作业分…

基于Java中的SSM框架实现快餐店线上点餐系统项目【项目源码+论文说明】

基于Java中的SSM框架实现快餐店线上点餐系统演示 摘要 随着计算机互联网的高速发展。餐饮业的发展也加入了电子商务团队。各种网上点餐系统纷纷涌现,不仅增加了商户的销售量和营业额,而且为买家提供了极大的方便,足不出户,就能订…

软件测评中心:进行科技成果鉴定测试的注意事项和好处简析

软件产品科技成果鉴定是有效评价科技成果质量和水平的方法之一,也是鼓励科技成果通过市场竞争等方式得到有效的评价和认可,可以推动科技成果的进步和转化。 一、进行科技成果鉴定测试时的注意事项:   1、应由具备一定资质和能力的专业机构…

Android Studio实现内容丰富的安卓外卖平台

获取源码请点击文章末尾QQ名片联系,源码不免费,尊重创作,尊重劳动 项目编号122 1.开发环境android stuido jdk1.8 eclipse mysql tomcat 2.功能介绍 安卓端: 1.注册登录 2.查看公告 3.查看外卖分类 4.购物车, 5.个人中…

深度学习_微调_7

目标 微调的原理利用微调模型来完成图像的分类任务 微调的原理 微调(Fine-tuning)是一种在深度学习中广泛应用的技术,特别是在预训练模型(Pretrained-Models)的基础上进行定制化训练的过程。微调的基本原理和步骤如下…

【项目】YOLOv5+PaddleOCR实现艺术字验证码识别

YOLOv5PaddleOCR实现艺术字类验证码识别 一、引言1.1 实现目标1.2 人手动点选验证码逻辑1.3 计算机点选逻辑 二、计算机验证方法2.1 PaddleOCR下方文字识别方法2.2 YOLOv5目标检测方法2.3 艺术字分类方法2.4 返回结果 三、代码获取 一、引言 1.1 实现目标 要识别的验证码类型…

c语言综合练习题

1.编写程序实现键盘输入一个学生的学分绩点 score&#xff08;合法的范围为:1.0—5.0&#xff09;&#xff0c;根据学生的学分绩点判定该学 生的奖学金的等级&#xff0c;判定规则如下表所示。 #include <stdio.h>int main() {float score;printf("请输入学生的学分…

Harbor-私有镜像仓库

目录 一、Harbor 原理说明 1.软件资源介绍 2.Harbor 特性 3.Harbor 认证过程 4.Harbor 认证流程 二、私有镜像仓库实验 1.环境准备 2.安装docker 3.配置镜像加速和私有仓库地址 4.搭建harbor仓库 5.本地windows浏览器访问配置 一、Harbor 原理说明 1.软件资源介绍 …

面试算法-62-盛最多水的容器

题目 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;你不能倾斜容器。…

CycleGAN训练及测试过程细节记录

CycleGAN训练及测试过程细节记录 文章目录 关于训练关于测试 关于训练 1、训练前将数据配置好&#xff0c;并在Pycharm中写好配置信息 2、关于训练过程的参数配置在 options/train_options.py options/base_options.py batch_size&#xff1a;批大小 crop_size&#xff1a;…

Android分区存储到底该怎么做

文章目录 一、Android存储结构二、什么是分区存储&#xff1f;三、私有目录和公有目录三、存储权限和分区存储有什么关系&#xff1f;四、我们应该该怎么做适配&#xff1f;4.1、利用File进行操作4.2、使用MediaStore操作数据库 一、Android存储结构 Android存储分为内部存储和…

支付宝手机网站支付,微信扫描二维码支付

支付宝手机网站支付 支付宝文档 响应示例 <form name"punchout_form" method"post" action"https://openapi.alipay.com/gateway.do?charsetUTF-8&methodalipay.trade.wap.pay&formatjson&signERITJKEIJKJHKKKKKKKHJEREEEEEEEEEEE…

MySQL 数据库设计范式

第一范式&#xff08;1NF&#xff09; 每一列都是不可分割的原子数据项第二范式&#xff08;2NF&#xff09; 在1NF的基础上&#xff0c;非码属性必须完全依赖于候选码(在1NF基础上消除非主属性对主码的部分函数依赖) 1.函数依赖A->B&#xff0c;如果通过A属性(属性组)的值…

Transformer学习【从零理解】

Transformer 一、整体框架 二、Encoder 1.输入部分: &#xff08;1&#xff09;Embedding&#xff1a;将输入的词转换为对应的词向量。 &#xff08;2&#xff09;位置编码&#xff1a;因为保证输出时&#xff0c;顺序不会打乱&#xff0c;所以要加入时序信息即位置编码。 公…

如何避免AI网红经济泡沫?警惕细分行业的AI转型而不是转行

一、AI泡沫预防针 要避免AI相关新概念催生的网红经济泡沫&#xff0c;可以从多个角度采取措施&#xff1a; 1. **理性投资**&#xff1a; - 投资者应对AI项目和网红经济中的企业进行深入研究&#xff0c;了解其真实的技术实力、商业模式的可行性和盈利能力&#xff0c;而非…

初识GO语言

是由google公司推出的一门编程语言&#xff0c;12年推出的第一个版本 Go的特点 Go为什么能在最近的IT领域炙手可热 集python简洁&C语言的性能于一身 21世纪的C语言 顺应容器化时代的到来 区块链的崛起 学习一门编程语言可以划分为下面这三个步骤 安装 编译器 or 解…

JAVA多线程之synchronized锁

文章目录 1. 临界区2. synchronized使用2.1 不加锁实现2.2 synchronized加锁2.3 面向对象的改进2.4 方法上加synchronized2.5 线程安全 3. Monitor3.1 Java对象头3.2 Monitor工作流程3.3 字节码角度 4. synchronized原理4.1 轻量级锁4.2 锁膨胀4.3 偏向锁4.3.1 偏向锁过程4.3.2…

【链表】Leetcode 2. 两数相加【中等】

两数相加 给你两个 非空 的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的&#xff0c; 并且每个节点只能存储 一位 数字。请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。你可以假设除了数字 0 之外&#xff0c;这两个数都不…

Redis数据结构对象中的对象共享、对象的空转时长

对象共享 概述 除了用于实现引用计数内存回收机制之外&#xff0c;对象的引用计数属性还带有对象共享的作用。 在Redis中&#xff0c;让多个键共享同一个值对象需要执行以下两个步骤: 1.将数据库键的值指针指向一个现有的值对象2.将被共享的值对象的引用计数增一 目前来说…