YOLOv7 | 添加GSConv,VoVGSCSP等多种卷积,有效提升目标检测效果,代码改进(超详细)

⭐欢迎大家订阅我的专栏一起学习⭐

🚀🚀🚀订阅专栏,更新及时查看不迷路🚀🚀🚀
       YOLOv5涨点专栏:http://t.csdnimg.cn/QdCj6

YOLOv7专栏: http://t.csdnimg.cn/dygOj

YOLOv8涨点专栏:http://t.csdnimg.cn/Avu8g

                    💡魔改网络、复现论文、优化创新💡                

目录

主要想法

GSConv

GSConv代码实现 

 slim-neck

  slim-neck代码实现

yaml文件

完整代码分享

总结


目标检测是计算机视觉中重要的下游任务。对于车载边缘计算平台来说,巨大的模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的精度。我们引入了一种新的轻量级卷积技术 GSConv,以减轻模型重量但保持准确性。 GSConv 在模型的准确性和速度之间实现了出色的权衡。并且,我们提供了一种设计范例,细颈,以实现探测器更高的计算成本效益。我们的方法的有效性在二十多组比较实验中得到了强有力的证明。特别是,与原始检测器相比,通过我们的方法改进的检测器获得了最先进的结果(例如,在公开数据集的Tesla T4 GPU 上以100FPS 的速度获得 70.9% mAP0.5)。

 主要想法

生物大脑处理信息的强大能力和低能耗远远超出了计算机。简单地无休止地增加模型参数的数量并不能建立强大的模型。轻量化设计可以有效缓解现阶段高昂的计算成本。这个目的主要是通过深度可分离卷积(DSC)运算来减少参数量和浮点运算(FLOP)来实现的,效果很明显。然而DSC的缺点也很明显:在计算过程中输入图像的通道信息被分离。这一缺陷导致 DSC 的特征提取和融合能力比标准卷积 (SC) 低得多。

SC(左) 和 DSC(右) 的计算过程。 SC是通道密集卷积计算,DSC是通道稀疏卷积计算。

GSConv

尽管DSC有一定的优点,但DSC 的缺陷在主干中直接被放大,无论是用于图像分类还是检测。我们相信SC和DSC可以合作。我们注意到,仅通过混洗 DSC 输出通道生成的特征图仍然是“深度分离”。为了使DSC的输出尽可能接近SC,我们引入了一种新方法——SC、DSC和shuffle的混合卷积,命名为GSConv。如图所示,我们使用shuffle将SC(通道密集卷积运算)生成的信息渗透到DSC生成的信息的每个部分中。shuffle是一种统一的混合策略。该方法通过在不同通道上统一交换局部特征信息,可以将来自 SC 的信息完全混合到 DSC 的输出中,而无需任何附加功能。

GSConv 模块的结构—— “Conv”框由三层组成:卷积 2D 层、批量归一化 2D 层和激活层。这里蓝色标记的“DWConv”表示DSC操作。
GSConv代码实现 
import torch
import torch.nn as nn
import math# GSConvE test
class GSConvE(nn.Module):'''GSConv enhancement for representation learning: generate various receptive-fields andtexture-features only in one Conv modulehttps://github.com/AlanLi1997/slim-neck-by-gsconv'''def __init__(self, c1, c2, k=1, s=1, g=1, act=True):super().__init__()c_ = c2 // 4self.cv1 = Conv(c1, c_, k, s, None, g, act)self.cv2 = Conv(c_, c_, 9, 1, None, c_, act)self.cv3 = Conv(c_, c_, 13, 1, None, c_, act)self.cv4 = Conv(c_, c_, 17, 1, None, c_, act)def forward(self, x):x1 = self.cv1(x)x2 = self.cv2(x1)x3 = self.cv3(x1)x4 = self.cv4(x1)y = torch.cat((x1, x2, x3, x4), dim=1)# shuffley = y.reshape(y.shape[0], 2, y.shape[1] // 2, y.shape[2], y.shape[3])y = y.permute(0, 2, 1, 3, 4)return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])def autopad(k, p=None):  # kernel, padding# Pad to 'same'if p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# C_B_Mdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.Mish() if act else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class GSConv(nn.Module):# GSConv https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=1, s=1, g=1, act=True):super().__init__()c_ = c2 // 2self.cv1 = Conv(c1, c_, k, s, None, g, act)self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)def forward(self, x):x1 = self.cv1(x)x2 = torch.cat((x1, self.cv2(x1)), 1)# shuffley = x2.reshape(x2.shape[0], 2, x2.shape[1] // 2, x2.shape[2], x2.shape[3])y = y.permute(0, 2, 1, 3, 4)return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])class GSConvns(GSConv):# GSConv with a normative-shuffle https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=1, s=1, g=1, act=True):super().__init__(c1, c2, k=1, s=1, g=1, act=True)c_ = c2 // 2self.shuf = nn.Conv2d(c_ * 2, c2, 1, 1, 0, bias=False)def forward(self, x):x1 = self.cv1(x)x2 = torch.cat((x1, self.cv2(x1)), 1)# normative-shuffle, TRT supportedreturn nn.ReLU(self.shuf(x2))class GSBottleneck(nn.Module):# GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=3, s=1):super().__init__()c_ = c2 // 2# for lightingself.conv_lighting = nn.Sequential(GSConv(c1, c_, 1, 1),GSConv(c_, c2, 3, 1, act=False))self.shortcut = Conv(c1, c2, 1, 1, act=False)def forward(self, x):return self.conv_lighting(x) + self.shortcut(x)class DWConv(Conv):# Depth-wise convolution classdef __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groupssuper().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)class GSBottleneckC(GSBottleneck):# cheap GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=3, s=1):super().__init__(c1, c2, k, s)self.shortcut = DWConv(c1, c2, 3, 1, act=False)class VoVGSCSP(nn.Module):# VoVGSCSP module with GSBottleneckdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)# self.gc1 = GSConv(c_, c_, 1, 1)# self.gc2 = GSConv(c_, c_, 1, 1)self.gsb = GSBottleneck(c_, c_, 1, 1)self.res = Conv(c_, c_, 3, 1, act=False)self.cv3 = Conv(2*c_, c2, 1)  #def forward(self, x):x1 = self.gsb(self.cv1(x))y = self.cv2(x)return self.cv3(torch.cat((y, x1), dim=1))
 slim-neck

此外,还研究了增强 CNN 学习能力的通用方法,例如 DensNet 、VoVNet 和 CSPNet ,然后根据这些方法的理论设计 slim-neck 的结构。我们设计了细长的颈部,以降低检测器的计算复杂性和推理时间,但保持精度。 GSConv完成了降低计算复杂度的任务,而减少推理时间并保持精度的任务需要新的模型。 

GSConv的计算成本约为SC的50%(0.5+0.5C1,C1值越大,比例越接近50%),但其对模型学习能力的贡献与后者相当。基于GSConv,我们在GSConv的基础上继续引入GS瓶颈,下图(a)展示了GS瓶颈模块的结构。然后,我们使用一次性聚合方法设计跨阶段部分网络(GSCSP)模块VoV-GSCSP。图(b)(c)和(d)分别显示了我们为VoV-GSCSP提供的三种设计方案,其中(b)简单直接且推理速度更快,(c)和(d)具有功能的重用率更高。事实上,结构越简单的模块由于硬件友好而更容易被使用。下表也详细报告了VoV-GSCSP1、2、3三种结构的消融研究结果,事实上,VoVGSCSP1表现出更高的性价比。最后,我们需要灵活地使用 GSConv、GS 瓶颈和 VoV-GSCSP 这四个模块。

(a) GS瓶颈模块和(b)、(c)、(d) VoV-GSCSP1、2、3模块的结构

细颈 yolov5n 的三种不同 VoV-GSCSP 模块的比较
  slim-neck代码实现
class VoVGSCSPC(VoVGSCSP):# cheap VoVGSCSP module with GSBottleneckdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):super().__init__(c1, c2, e)c_ = int(c2 * e)  # hidden channelsself.gsb = GSBottleneckC(c_, c_, 3, 1)

代码都添加在common.py中 

yaml文件
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicle
# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, GSConv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, VoVGSCSP, [512, False]],  # 13[-1, 1, GSConv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, VoVGSCSP, [256, False]],  # 17 (P3/8-small)[-1, 1, GSConv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, VoVGSCSP, [512, False]],  # 20 (P4/16-medium)[-1, 1, GSConv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, VoVGSCSP, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]
完整代码分享

本代码结合了YOLOv7的官方仓库进行改进,实现了YOLOv7 + GSconv

完整代码链接如下:

链接: https://pan.baidu.com/s/1zQgPu1lxZ4Sm3HYiCW3awg?pwd=v4m4 提取码: v4m4 

如果执行代码出现如下面的样例则代表替换卷积模块成功。

改进后的样例,部分截图

总结

本实验引入了一种新的轻量级卷积方法 GSConv,使深度可分离卷积达到接近普通卷积的效果并且更加高效。设计了一次性聚合模块 VoV-GSCSP 来代替普通的瓶颈模块以加速推理。此外,我们还提供轻量化的细颈设计范例。在我们的实验中,与其他轻量级卷积方法相比,GSConv 显示出更好的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/757742.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《论文阅读》端到端情感原因对提取的有效子句间建模

《论文阅读》端到端情感原因对提取的有效子句间建模 前言简介模型架构Document EncodingInter-Clause Relationship ModelingClause Pair Representation Learning and Ranking损失函数问题前言 亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~ 无抄袭,无复制,纯…

浙政钉埋点:深入解析与应用实践

一、引言 在数字化时代,数据已经成为驱动业务发展的重要动力。对于政府机构而言,如何有效收集、分析和利用数据,以提升公共服务质量和效率,已成为一项重要课题。浙政钉作为浙江省政府推出的数字化协同办公平台,其埋点…

使用Python实现凯撒密码加密

凯撒密码(Caesar Cipher)是一种简单的替换式密码,其加密原理是将明文中的每个字符按照一定的偏移量进行替换,从而得到密文。在Python中,我们可以使用内置的字符串函数和循环结构来实现凯撒密码的加密过程。 以下是一个…

使用nginx搭建的文件服务器一直提示 404 Not Found ,是文件不存在还是没有权限?

使用nginx搭建一个简单的文件服务器,配置如下 user root; worker_processes auto; error_log /var/log/nginx/error.log; pid /run/nginx.pid;# Load dynamic modules. See /usr/share/nginx/README.dynamic. include /usr/share/nginx/modules/*.conf;events {wor…

mapbox 获取当前比例尺 scale

一、mapbox中提供了比例尺控件,在创建地图后可使用此方式显示比例尺控件 map.addControl(new mapboxgl.ScaleControl(), bottom-left) 可通过修改css改变自带比例尺样式 二、计算得出当前scale, 具体代码可在mapbox源码中查看,此处仅以单位M…

爬虫逆向sm3和sm4 加密 案例

注意!!!!某XX网站逆向实例仅作为学习案例,禁止其他个人以及团体做谋利用途!!! 案例--aHR0cDovLzExMS41Ni4xNDIuMTM6MTgwODgvc3Vic2lkeU9wZW4 第一步:分析页面和请求方式 …

spark基本原理UI界面解读

这里是引用 1 八股文 1.1 基本原理 driver节点是整个应用程序的指挥所 指挥官是sparkcontext 环境:构建一个集群 应用程序提交 确定主节点,确定指挥所driver,确定指挥官sparkcontext sparkcontext会向资源管理器申请资源 会将作业分…

常见的几个Python技术难题

大家在日常开发中有没有遇到一些难题呢?计划后面出几期专题针对性的解决。大家如果有其它问题可以在评论区给出哈。 以下是几个Python技术难题的例子: 并发和多线程编程:Python的全局解释器锁(GIL)限制了多线程的并行…

华为OD机试 - 租车骑绿岛(Java JS Python C C++)

题目描述 部门组织绿岛骑行团建活动。租用公共双人自行车,每辆自行车最多坐两人,最大载重M。 给出部门每个人的体重,请问最多需要租用多少双人自行车。 输入描述 第一行两个数字m、n,分别代表自行车限重,部门总人数。 第二行,n个数字,代表每个人的体重,体重都小于…

CCF-CSP认证考试 202303-2 垦田计划 100分题解

更多 CSP 认证考试题目题解可以前往:CSP-CCF 认证考试真题题解 原题链接: 202303-2 垦田计划 时间限制: 1.0s 内存限制: 512.0MB 问题描述 顿顿总共选中了 n n n 块区域准备开垦田地,由于各块区域大小不一&#xf…

Effective-C++阅读解析条款(条款一:视C++为一个语言联邦)

个人主页:Lei宝啊 愿所有美好如期而遇 前言 博主只是将书中内容用自己的理解写了出来,术语没有那么多,而且其中很多部分理解不是很透彻,对于C初学者来说,本专栏博客还是很有意义的,因为初学者看这本书通…

基于Java中的SSM框架实现快餐店线上点餐系统项目【项目源码+论文说明】

基于Java中的SSM框架实现快餐店线上点餐系统演示 摘要 随着计算机互联网的高速发展。餐饮业的发展也加入了电子商务团队。各种网上点餐系统纷纷涌现,不仅增加了商户的销售量和营业额,而且为买家提供了极大的方便,足不出户,就能订…

Vue双向数据绑定的简单实现-- Observer、Compiler、proxy

前言 双向数据绑定人人都会背了,已经没什么新奇了。 但是如果遇到XX喜欢问源码之类的,或者问你设计思路你又该如何应对呢,所以下面这篇文章主要是为了记录双向数据绑定的一个实现,采用了类的方式,积极向面向对象编程靠…

css实现自适应正方形

通过百分比&#xff08;%&#xff09;和宽高比通过vw或者vh通过百分比&#xff08;%&#xff09; padding-top 或者 padding-bottom以上列举三种方法&#xff0c;还有其他方法请各路大神评论区展示 展示 <style>* {margin: 0;padding: 0;}.box {width: 20%;aspect-rati…

软件测评中心:进行科技成果鉴定测试的注意事项和好处简析

软件产品科技成果鉴定是有效评价科技成果质量和水平的方法之一&#xff0c;也是鼓励科技成果通过市场竞争等方式得到有效的评价和认可&#xff0c;可以推动科技成果的进步和转化。 一、进行科技成果鉴定测试时的注意事项&#xff1a;   1、应由具备一定资质和能力的专业机构…

Android Studio实现内容丰富的安卓外卖平台

获取源码请点击文章末尾QQ名片联系&#xff0c;源码不免费&#xff0c;尊重创作&#xff0c;尊重劳动 项目编号122 1.开发环境android stuido jdk1.8 eclipse mysql tomcat 2.功能介绍 安卓端&#xff1a; 1.注册登录 2.查看公告 3.查看外卖分类 4.购物车&#xff0c; 5.个人中…

深度学习_微调_7

目标 微调的原理利用微调模型来完成图像的分类任务 微调的原理 微调&#xff08;Fine-tuning&#xff09;是一种在深度学习中广泛应用的技术&#xff0c;特别是在预训练模型&#xff08;Pretrained-Models&#xff09;的基础上进行定制化训练的过程。微调的基本原理和步骤如下…

AutoSAR配置与实践(深入篇)10.5 CANTP 层对意外到达的N-PDU处理策略

AutoSAR配置与实践(深入篇)10.5 CANTP 层对意外到达的N-PDU处理策略 CANTP 层对意外到达的N-PDU处理策略一、规范说明二、具体流程图解析2.1 发送端对意外到达的PDU的处理图解2.2 接收端对意外到达的PDU的处理图解CANTP 层对意外到达的N-PDU处理策略 ->返回总目录<- …

【项目】YOLOv5+PaddleOCR实现艺术字验证码识别

YOLOv5PaddleOCR实现艺术字类验证码识别 一、引言1.1 实现目标1.2 人手动点选验证码逻辑1.3 计算机点选逻辑 二、计算机验证方法2.1 PaddleOCR下方文字识别方法2.2 YOLOv5目标检测方法2.3 艺术字分类方法2.4 返回结果 三、代码获取 一、引言 1.1 实现目标 要识别的验证码类型…

c语言综合练习题

1.编写程序实现键盘输入一个学生的学分绩点 score&#xff08;合法的范围为:1.0—5.0&#xff09;&#xff0c;根据学生的学分绩点判定该学 生的奖学金的等级&#xff0c;判定规则如下表所示。 #include <stdio.h>int main() {float score;printf("请输入学生的学分…