Redis 搭建主从集群

文章目录

  • 1. 主从集群架构
    • 1.1 准备实例和配置
    • 1.2 启动
    • 1.3 开启主从关系
    • 1.4 测试
  • 2. 主从同步原理
    • 2.1 全量同步
    • 2.2 增量同步
      • repl_backlog原理
    • 2.3 主从同步优化
    • 小结


在这里插入图片描述

单节点的 Redis 并发能力有限,要进一步提高 Redis 的并发能力,就需要搭建主从集群,实现读写分离。

1. 主从集群架构

集群架构

共包含三个节点,一个主节点,两个从节点。
这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002slave
192.168.150.1017003slave

注:192.168.150.101 为redis所在虚拟机或者服务器的 ip 。

1.1 准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。
1)创建目录
我们创建三个文件夹,名字分别叫7001、7002、7003:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003

如下图:
image.png

2)恢复原始配置
修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。

# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000# 关闭AOF
appendonly no

3)拷贝配置文件到每个实例目录
然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf

4)修改每个实例的端口、工作目录
修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):

sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf

注意上面的命可能不会改成功!

5)修改每个实例的声明IP
虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:

# redis实例的声明 IP
replica-announce-ip 192.168.150.101

每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):

# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf

1.2 启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf

启动后:
image-20210630183914491.png

如果要一键停止,可以运行下面命令:

printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown

1.3 开启主从关系

现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者 slaveof(5.0以前)命令。
有临时和永久两种模式:

  • 修改配置文件(永久生效)
    • 在redis.conf中添加一行配置:slaveof <masterip> <masterport>
  • 使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):
slaveof <masterip> <masterport>

注意:在5.0以后新增命令replicaof,与salveof效果一致。

这里我们为了演示方便,使用方式二。

通过redis-cli命令连接7002,执行下面命令:

# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001

通过redis-cli命令连接7003,执行下面命令:

# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001

然后连接 7001节点,查看集群状态:

# 连接 7001
redis-cli -p 7001
# 查看状态
info replication

结果:
image.png

1.4 测试

执行下列操作以测试:

  • 利用redis-cli连接7001,执行set num 123
  • 利用redis-cli连接7002,执行get num,再执行set num 666
  • 利用redis-cli连接7003,执行get num,再执行set num 888

可以发现,只有在7001这个master节点上可以执行写操作,7002 和 7003 这两个 slave 节点只能执行读操作。


2. 主从同步原理

2.1 全量同步

主从第一次建立连接时,会执行全量同步,将 master 节点的所有数据都拷贝给 slave 节点,流程:
image-20210725152222497.png
这里有一个问题,master如何得知salve是第一次来连接呢??
有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个 master 都有唯一的 replid,slave 则会继承 master 节点的 replid
  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。
因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。
master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。
master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。
因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致
如图:
image-20210725152700914.png

完整流程描述:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步

2.2 增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步
什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:
image-20210725153201086.png

那么 master 怎么知道 slave 与自己的数据差异在哪里呢?

repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?
这就要说到全量同步时的repl_baklog文件了。
这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
image-20210725153359022.png

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。
随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:
image-20210725153524190.png
直到数组被填满:
image-20210725153715910.png
此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:
image-20210725153937031.png
如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
image-20210725154155984.png
棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
image-20210725154216392.png

2.3 主从同步优化

主从同步可以保证主从数据的一致性,非常重要。
可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO(适用于网络好、磁盘慢 的场景)。
  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO。
  • 适当提高 repl_baklog 的大小,发现 slave 宕机时尽快实现故障恢复,尽可能避免全量同步。
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力。

主从从架构图:
主从架构图

小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时



在这里插入图片描述



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/757607.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

杰发科技AC7801——Flash数据读取

0. 简介 因为需要对Flash做CRC校验&#xff0c;第一步先把flash数据读出来。 1. 代码 代码如下所示 #include "ac780x_eflash.h" #include "string.h" #define TestSize 1024 ///< 4K #define TestAddressStart 0x08000000 uint8_t Data[7000]; int…

<DFS剪枝>数字王国之军训排队

DFS剪枝 其实就是将搜索过程一些不必要的部分直接剔除掉。 剪枝是回溯法的一种重要优化手段&#xff0c;往往需要先写一个暴力搜索&#xff0c;然后找到某些特殊的数学关系&#xff0c;或者逻辑关系&#xff0c;通过它们的约束让搜索树尽可能浅而小&#xff0c;从而达到降低时间…

MAC地址(静态、黑洞、优先级)

拓扑图 配置 1&#xff09;静态MAC地址配置 mac-address learning disable命令用来关闭MAC地址学习功能。 关闭MAC地址学习功能后&#xff0c;设备将不会再从该接口学习新的MAC地址。关闭MAC地址学习后可配置的动作有discard和forward。 关闭MAC地址学习功能的缺省动作为fo…

NSS [SWPUCTF 2022 新生赛]ez_ez_unserialize

NSS [SWPUCTF 2022 新生赛]ez_ez_unserialize 开题&#xff0c;直接给了题目源码。 简单看了一下&#xff0c;题目告诉我们flag在哪&#xff0c;而且类中有高亮文件方法。怎么拿flag已经很明显了。关键点在于__weakup()魔术方法固定死了我们高亮的文件。所以这题只需要绕过__w…

【故障排查】10分钟解决Quartz重复调度的疑难杂症

我司使用Apache DolphinScheduler作为调度框架很久了&#xff0c;感兴趣的小伙伴可以看看这些干货文章&#xff1a; 因为之前监控到会出现重复的调度的问题&#xff0c;所以此文记录排查重复调度问题的全过程&#xff0c;希望对社区其他的小伙伴能够起到抛砖引玉的作用&#x…

【学习】python函数语法(面像对象、封装函数)

阅读开源深度学习源码的时候&#xff0c;使用到了很多封装函数以及Python的高级语法&#xff0c;看起来很混乱很痛苦很困难。对python函数语法做个总结&#xff01;&#xff01;&#xff01; Table of Contents 熟练Python语法&#xff0c;尤其是函数参数、迭代器与生成器、函…

使用Redis做缓存的小案例

如果不了解Redis&#xff0c;可以查看本人博客&#xff1a;Redis入门 Redis基于内存&#xff0c;因此查询速度快&#xff0c;常常可以用来作为缓存使用&#xff0c;缓存就是我们在内存中开辟一段区域来存储我们查询比较频繁的数据&#xff0c;这样&#xff0c;我们在下一次查询…

C#,图论与图算法,有向图(Directed Graph)的环(Cycle)的普通判断算法与源代码

1 检查该图是否包含循环 给定一个有向图,检查该图是否包含循环。如果给定的图形至少包含一个循环,则函数应返回true,否则返回false。 方法:深度优先遍历可用于检测图中的循环。连接图的DFS生成树。只有当图中存在后缘时,图中才存在循环。后边是从节点到自身(自循环)或…

[视觉基础知识]: img to bev # include bev seg

参考&#xff1a;https://towardsdatascience.com/monocular-birds-eye-view-semantic-segmentation-for-autonomous-driving-ee2f771afb59 有源传感器&#xff08;lidar or radar&#xff09;得到的数据&#xff0c;天然就是一种bev表示&#xff08;x-y平面&#xff09;&#…

想速成AD?凡亿教育正式上线《Altium Designer 24:150讲操作速成实战课程》

随着电子技术的不断发展,芯片生产工艺迭代更新,印制电路板(PCB)结构日益复杂,从最早的单片机到双面板,再到复杂的多层板结构,电路板上的布线密度越来越高。 同时,随着DSP、ARM、FPGA、DDR等高速逻辑元件的应用,PCB的信号完整性和抗干扰性能显得尤为重要,光靠EDA软件的自动布线…

LeetCode每日一题 翻转二叉树(二叉树)

题目描述 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a;root [4,2,7,1,3,6,9] 输出&#xff1a;[4,7,2,9,6,3,1] 示例 2&#xff1a; 输入&#xff1a;root [2,1,3] 输出&#xff1a;[2,3,1]示…

Mistral AI vs. Meta:两大 Top 开源模型的对比

编者按&#xff1a; 随着大模型的不断升级和参数量的持续扩大&#xff0c;越来越多人开始重视大模型存在的硬件资源要求高、碳排放量较大等问题。如何在保持模型性能的同时&#xff0c;降低计算成本和资源消耗&#xff0c;成为了业界一个迫切需要解决的问题。 我们今天为大家带…

Servlet使用

文章目录 简介一、快速入门二、Servlet 执行流程三、Servlet 生命周期四、Servlet 方法介绍五、Servlet 体系结构六、Servlet urlPattern配置七、XML 配置方式编写 Servlet 简介 一、快速入门 <dependencies><dependency><groupId>javax.servlet</groupId…

个人网站制作 Part 9 添加发布、管理博客功能 | Web开发项目

文章目录 &#x1f469;‍&#x1f4bb; 基础Web开发练手项目系列&#xff1a;个人网站制作&#x1f680; 添加博客功能&#x1f528;使用Express和MongoDB&#x1f527;步骤 1: 创建博客模型&#x1f527;步骤 2: 创建博客路由 &#x1f528;使用前端框架&#x1f527;步骤 3:…

外包干了28天,技术退步明显......

说一下自己的情况&#xff0c;本科生&#xff0c;19年通过校招进入深圳某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试&a…

Testng框架集成新业务

总体框架设计见我另一篇博客&#xff1a;httpclienttestng接口自动化整体框架设计 <block&#xff1a;表示测试用例块> block后面是 测试用例的名称 ||接口名,该接口名在URL.txt里维护接口 ||get\post&#xff1a;表示请求的方法 get_1\2\3\4&#xff1a;代表加密 get: …

【保姆级教程】如何拥有GPT?(Proton邮箱版)

OnlyFans 订阅教程移步&#xff1a;【保姆级】2024年最新Onlyfans订阅教程 Midjourney 订阅教程移步&#xff1a; 【一看就会】五分钟完成MidJourney订阅 GPT-4.0 升级教程移步&#xff1a;五分钟开通GPT4.0 如果你需要使用Wildcard开通GPT4、Midjourney或是Onlyfans的话&am…

排序算法之选择排序介绍

目录 算法简介 算法描述 代码实现 算法简介 选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理&#xff1a;首先在未排序序列中找到最小&#xff08;大&#xff09;元素&#xff0c;存放到排序序列的起始位置&#xff0c;然后&#xff0c;再从剩余未排序元素…

Altair HyperStudy 多学科设计研究软件,帮助设计师探索和优化产品的性能和鲁棒性

HyperStudy 是一款多学科设计研究软件&#xff0c;可帮助设计师探索和优化产品的性能和鲁棒性。 HyperStudy 通过结合新型数学方法、预测性建模和数据挖掘功能的自动化流程&#xff0c;可智能、高效地探索任何系统模型的设计空间。在考虑多物理场约束的同时&#xff0c;引导用…

业务服务:redisson

文章目录 前言一、配置1. 添加依赖2. 配置文件/类3. 注入redission3. 封装工具类 二、应用1. RedisUtils工具类的基本使用 三、队列1. 工具类2. 普通队列3. 有界队列&#xff08;限制数据量&#xff09;4. 延迟队列&#xff08;延迟获取数据&#xff09;5. 优先队列&#xff08…