原型,模板,策略,适配器模式

原型模式

原型模式(创建型模式),核心思想就是:基于一个已有的对象复制一个对象出来,通过复制来减少对象的直接创建的成本。
总结一下,原型模式的两种方法,浅拷贝只会复制对象里面的基本数据类型和引用对象的内存地址,不会递归地复制引用对象,以及引用对象的引用对象。而深拷贝就是会完全拷贝一个新的对象出来。所以,深拷贝的操作会比浅拷贝更加耗时,性能更差一点。同时浅拷贝的代码写起来也比深拷贝的代码写起来更简单一点。如果咱们拷贝的对象是不可变的,也就是说我这个对象只会查看,不会增删改,那么,直接用浅拷贝就好了,如果拷贝的对象存在增删改的情况,那么就需要使用深拷贝了。总而言之,就是要深浅得当,根据项目实际情况而定。
代码举例

// 原型接口
interface Shape extends Cloneable {void draw();Shape clone();
}// 具体原型类 - 圆形
class Circle implements Shape {private String color;public Circle(String color) {this.color = color;}@Overridepublic void draw() {System.out.println("Drawing a circle with color: " + color);}@Overridepublic Shape clone() {return new Circle(color);}
}// 具体原型类 - 正方形
class Square implements Shape {private String color;public Square(String color) {this.color = color;}@Overridepublic void draw() {System.out.println("Drawing a square with color: " + color);}@Overridepublic Shape clone() {return new Square(color);}
}// 原型管理器
class ShapeCache {private static Map<String, Shape> shapeMap = new HashMap<>();public static Shape getShape(String type) {Shape cachedShape = shapeMap.get(type);return (Shape) cachedShape.clone();}public static void loadCache() {Circle circle = new Circle("red");shapeMap.put("circle", circle);Square square = new Square("blue");shapeMap.put("square", square);}
}// 示例使用
public class PrototypePatternExample {public static void main(String[] args) {ShapeCache.loadCache();Shape clonedShape1 = ShapeCache.getShape("circle");clonedShape1.draw();  // 输出: Drawing a circle with color: redShape clonedShape2 = ShapeCache.getShape("square");clonedShape2.draw();  // 输出: Drawing a square with color: blue}
}

模板模式

模板方法模式也非常简单,但是,他却是比较重要的,在很多开源框架里面都用到了这个模式,并且,我们在做项目的时候,也会经常用到这个模式。这个模板方法模式,简单来说就是一句话:在父类中定义业务处理流程的框架,到子类中去做具体的实现。

代码举例

// 抽象模板类
abstract class Game {abstract void initialize();abstract void startPlay();abstract void endPlay();// 模板方法,定义算法框架public final void play() {initialize();startPlay();endPlay();}
}// 具体模板类 - 足球游戏
class FootballGame extends Game {@Overridevoid initialize() {System.out.println("Football Game Initialized! Start playing.");}@Overridevoid startPlay() {System.out.println("Playing football...");}@Overridevoid endPlay() {System.out.println("Football Game Finished!");}
}// 具体模板类 - 篮球游戏
class BasketballGame extends Game {@Overridevoid initialize() {System.out.println("Basketball Game Initialized! Start playing.");}@Overridevoid startPlay() {System.out.println("Playing basketball...");}@Overridevoid endPlay() {System.out.println("Basketball Game Finished!");}
}// 示例使用
public class TemplatePatternExample {public static void main(String[] args) {Game footballGame = new FootballGame();footballGame.play();// 输出:// Football Game Initialized! Start playing.// Playing football...// Football Game Finished!System.out.println();Game basketballGame = new BasketballGame();basketballGame.play();// 输出:// Basketball Game Initialized! Start playing.// Playing basketball...// Basketball Game Finished!}
}

策略模式

接着我们来看一下策略模式,策略模式呢也是非常简单,他就是定义一个主要的接口,然后很多个类去实现这个接口,比如说我们定义一个文件上传的接口,然后阿里云的上传类去实现它,腾讯云的上传类也去实现它,这样因为都是实现的同一个接口,所以上传类之间是可以在代码中互相替换的。

代码举例

// 策略接口
interface Strategy {int doOperation(int num1, int num2);
}// 具体策略类 - 加法
class AddStrategy implements Strategy {@Overridepublic int doOperation(int num1, int num2) {return num1 + num2;}
}// 具体策略类 - 减法
class SubtractStrategy implements Strategy {@Overridepublic int doOperation(int num1, int num2) {return num1 - num2;}
}// 上下文类
class Context {private Strategy strategy;public Context(Strategy strategy) {this.strategy = strategy;}public int executeStrategy(int num1, int num2) {return strategy.doOperation(num1, num2);}
}// 示例使用
public class StrategyPatternExample {public static void main(String[] args) {Context context = new Context(new AddStrategy());int result1 = context.executeStrategy(10, 5);System.out.println("10 + 5 = " + result1);  // 输出: 10 + 5 = 15context = new Context(new SubtractStrategy());int result2 = context.executeStrategy(10, 5);System.out.println("10 - 5 = " + result2);  // 输出: 10 - 5 = 5}
}

委派模式

委派模式(Delegate Pattern)又叫委托模式,是一种面向对象的设计模式,基本作用就是负责任务的调用和分配;是一种特殊的静态代理,可以理解为全权代理(代理模式注重过程,而委派模式注重结果),委派模式属于行为型模式,不属于GOF23种设计模式;

代码举例

// 委派接口
interface Printer {void print();
}// 具体委派类 - 打印机A
class PrinterA implements Printer {@Overridepublic void print() {System.out.println("Printer A is printing.");}
}// 具体委派类 - 打印机B
class PrinterB implements Printer {@Overridepublic void print() {System.out.println("Printer B is printing.");}
}// 委派类
class PrinterManager {private Printer printer;public void setPrinter(Printer printer) {this.printer = printer;}public void print() {printer.print();}
}// 示例使用
public class DelegatePatternExample {public static void main(String[] args) {PrinterManager printerManager = new PrinterManager();// 使用打印机APrinterA printerA = new PrinterA();printerManager.setPrinter(printerA);printerManager.print();  // 输出: Printer A is printing.System.out.println();// 使用打印机BPrinterB printerB = new PrinterB();printerManager.setPrinter(printerB);printerManager.print();  // 输出: Printer B is printing.}
}

适配器模式

适配器模式也比较简单,核心思想就是是:将一个类的接口转换成客户希望的另一个接口,讲白了就是通过适配器可以将原本不匹配、不兼容的接口或类结合起来;

代码举例

// 目标接口
interface Target {void request();
}// 适配者类
class Adaptee {public void specificRequest() {System.out.println("Specific request from Adaptee.");}
}// 适配器类
class Adapter implements Target {private Adaptee adaptee;public Adapter(Adaptee adaptee) {this.adaptee = adaptee;}@Overridepublic void request() {adaptee.specificRequest();}
}// 示例使用
public class AdapterPatternExample {public static void main(String[] args) {Adaptee adaptee = new Adaptee();Target adapter = new Adapter(adaptee);adapter.request();  // 输出: Specific request from Adaptee.}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/757502.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【linux线程(三)】生产者消费者模型详解(多版本)

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; Linux线程 1. 前言2. 初识生产…

【CesiumJS-功能记录1】相机锁定视角以及解除锁定

目录 相机锁定entities对象 使用lookAt方式相机锁定 相机锁定entities对象 锁定&#xff1a;viewer.trackedEntity entity; 解锁&#xff1a;viewer.trackedEntity undefined; entity为使用Cesium中entities方式引入的模型对象 使用lookAt方式相机锁定 锁定&#xff1a;view…

【GameFramework框架内置模块】10、本地化(Localization)

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址 大家好&#xff0c;我是佛系工程师☆恬静的小魔龙☆&#xff0c;不定时更新Unity开发技巧&#xff0c;觉得有用记得一键三连哦。 一、前言 【GameFramework框架】系列教程目录&#xff1a; https://blog.csdn.net/q7…

DEBUG Starting new HTTP connection -- requests的debug日志关闭

网上都是禁用requests的模块调用&#xff0c;使用&#xff1a; logging.getLogger(“requests”).setLevel(logging.WARNING) 使用无效&#xff0c;如何解决&#xff1f; 需要更改为对urllib3禁用&#xff1a; logging.getLogger(“urllib3”).setLevel(logging.WARNING)

实验8-2-8 字符串排序(PTA)

题目&#xff1a; 本题要求编写程序&#xff0c;读入5个字符串&#xff0c;按由小到大的顺序输出。 输入格式&#xff1a; 输入为由空格分隔的5个非空字符串&#xff0c;每个字符串不包括空格、制表符、换行符等空白字符&#xff0c;长度小于80。 输出格式&#xff1a; 按…

C#中的override和overload介绍

在C#中&#xff0c;override 和 overload 是两个不同的概念。 override 用于派生类中重新定义基类中的虚方法或抽象方法&#xff0c;实现多态性&#xff1b;而 overload 则是在同一个类中定义多个同名方法&#xff0c;但参数列表不同&#xff0c;以提供不同的功能或处理方式。 …

哔哩哔哩秋招Java二面

前言 作者&#xff1a;晓宜 个人简介&#xff1a;互联网大厂Java准入职&#xff0c;阿里云专家博主&#xff0c;csdn后端优质创作者&#xff0c;算法爱好者 一面过后面试官叫我别走&#xff0c;然后就直接二面&#xff0c;二面比较简短&#xff0c;记录一下&#xff0c;希望可以…

绝地求生:现在购买通行证还能兑换成长型武器吗?

大家好&#xff0c;我闲游盒&#xff0c;这几天收到几位盒友的私信咨询我现在购买通行证还能获得一把成长型武器吗&#xff1f;我相信还有许多盒友也有此困惑&#xff0c;那我就在这统一回复了&#xff0c;目前距通行证和商城物资箱礼包下架还有最后16天时间&#xff0c;众所周…

js实现hash路由原理

一、简单的上下布局&#xff0c;点击左侧导航&#xff0c;中间内容跟对变化&#xff0c;主要技术使用js检测路由的onhashchange事件 效果图 二、话不多说&#xff0c;直接上代码 <!DOCTYPE html> <html lang"zh"><head><meta charset"…

FPGA控制AD7606_AD7606解读

目录 一、AD7606解读二、引脚说明三、时序图 一、AD7606解读 AD7606特点&#xff1a; 8通道同步采样模拟通道数为8分辨率&#xff1a;16bit&#xff0c;即最小采样的电压为5V/(2^16) 0,00007V&#xff0c;即数字量的1就代表模拟量的0,00007V&#xff0c;2代表0,00014V有效位数…

C语言易错知识点

1、数组长度及所占字节数 char x[] {"Hello"},y[]{H,e,l,l,o}; x数组的长度为5&#xff0c;y的长度也是5 x、y数组所占字符串为6为 51(\0)6 strlen&#xff08;&#xff09;函数得到的是数组的长度 2、%%与%的优先级 #include<stdio.h> int main(){ int a…

iOS图片占内存大小与什么有关?

1. 问&#xff1a;一张图片所占内存大小跟什么有关&#xff1f; 图片所占内存大小&#xff0c;与图片的宽高有关 我们平时看到的png、jpg、webp这些图片格式&#xff0c;其实都是图片压缩格式。通过对应的算法来优化了大小以节省网络传输与本地保存所需的资源。 但是当我们加…

再谈EMC Unity存储系统内存DIMM问题

以前写过一篇关于EMC Unity 存储系统的DIMM的介绍文章&#xff0c;但是最近还是遇到很多关于内存的问题&#xff0c;还有一些退货&#xff0c;所以有必要再写一篇关于EMC Unity 内存方面的问题&#xff0c;供朋友们参考。如果还有疑问&#xff0c;可以加vx&#xff1a;StorageE…

【黑马头条】-day01环境搭建SpringBoot-Cloud-Nacos

文章目录 1 环境搭建及简介2 项目介绍2.1 应用2.2 业务说明2.3 技术栈2.4 收获2.5 大纲 3 Nacos准备3.1 安装Nacos 4 初始工程搭建4.1 环境准备4.1.1 导入项目4.1.2 设置本地仓库4.1.3 设置项目编码格式 4.2 全局异常4.2.1 自动装配 4.3 工程主体结构 5 登录功能开发5.1 需求分…

logrus包学习(一)

个人学习记录&#xff0c;写下来备用 logrus是golang的结构化日志包 一、创建一个实例 logger : logrus.New() 当然你也可以直接使用&#xff0c;我个人习惯实例化一下 二、设置格式 个人习惯使用json logger.SetFormatter(&logrus.JSONFormatter{TimestampFormat: …

echart多折线图堆叠 y轴和实际数据不对应

当使用 ECharts 绘制堆叠折线图时&#xff0c;有时会遇到 y 轴与实际数据不对应的问题。 比如明明值是50&#xff0c;但折线点在y轴的对应点却飙升到了二百多 解决办法&#xff1a; 查看了前端代码发现在echart的图表中有一个‘stack’的属性&#xff0c;尝试把他删除之后y轴的…

2020.9.8C++Primer学习笔记————模板函数

CPrimer学习笔记————模板函数 看CPrimer看到了第十章函数模板部分&#xff0c;其中提到了模板函数用法&#xff0c;帮助强类型语言减少简单方法的代码量。 C是强类型语言&#xff0c;在调用方法时需要对传参有严格的判断&#xff0c;例如实现一个简单的大小判断方法时&am…

算法体系-11 第十一节:二叉树基本算法(上)

一 两链表相交 1.1 题目描述 给定两个可能有环也可能无环的单链表&#xff0c;头节点head1和head2。请实现一个函数&#xff0c;如果两个链表相交&#xff0c;请返回相交的 第一个节点。如果不相交&#xff0c;返回null 【要求】 如果两个链表长度之和为N&#xff0c;时间复杂…

静电无处不在:揭秘液晶显示屏静电防护的“大师级“策略

静电&#xff0c;仿佛是电子产品制造过程中的隐形杀手&#xff0c;尤其对于液晶显示屏等精密电子元器件的影响更是不可小觑。然而&#xff0c;面对这一挑战&#xff0c;有些制造商采取了一系列超越寻常的静电防护措施。今天&#xff0c;我们将揭开他们的"大师级"策略…

利用Android studio 查看模拟器中数据文件

打开Android studio &#xff0c;然后按照下图选择 然后会在右侧打开一个这样子的管理弹窗 找到 data/data/your project file 你的缓存跟下载的文件就都在里面了