【YOLOv5改进系列(2)】高效涨点----Wise-IoU详细解读及使用Wise-IoU(WIOU)替换CIOU

在这里插入图片描述


WIOU损失函数替换

  • 🚀🚀🚀前言
  • 一、1️⃣ Wise-IoU解读---基于动态非单调聚焦机制的边界框损失
    • 1.1 🎓 介绍
    • 1.2 ✨WIOU解决的问题
    • 1.3 ⭐️论文实验结果
    • 1.4 🎯论文方法
      • 1.4.1☀️Wise-IoU v1
      • 1.4.2☀️Wise-IoU v2
      • 1.4.3☀️Wise-IoU v3
  • 二、2️⃣如何添加WIOU损失函数
    • 2.1 🎓 修改bbox_iou函数
    • 2.2 ✨修改__call__中iou函数
  • 三、3️⃣实验测试结果


在这里插入图片描述

👀🎉📜系列文章目录

【yolov5-v6.0详细解读】
【目标检测—IOU计算详细解读(IoU、GIoU、DIoU、CIoU、EIOU、Focal-EIOU、SIOU、WIOU)】
【YOLOv5改进系列(1)】高效涨点----使用EIoU、Alpha-IoU、SIoU、Focal-EIOU替换CIou

🚀🚀🚀前言

在上一篇文章使用了EIoU、Alpha-IoU、SIoU、Focal-EIOU替换yolov5中默认的CIou损失,发现Focal-EIOU对于钢轨表面缺陷识别的提升效果最好,将map@0.5提升到了81.1%,这节使用Wise-IoU的三个版本(分别是v1、v2、v3)去替换CIOU损失,来观察不同类别的map@0.5变化。其中使用Wise-IoU v1方法将钢轨表面缺陷数据集map@50从77.9%提升到了86.3%,将近提升了10个百分点


一、1️⃣ Wise-IoU解读—基于动态非单调聚焦机制的边界框损失

1.1 🎓 介绍

📜该论文是2023年8月发表在arXiv上;
论文连接:Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

🚀目标检测作为计算机视觉的核心问题,其检测性能依赖于损失函数的设计。边界框损失函数作为目标检测损失函数的重要组成部分,其良好的定义将为目标检测模型带来显著的性能提升。近年来的研究大多假设训练数据中的示例有较高的质量,致力于强化边界框损失的拟合能力。但我们注意到目标检测训练集中含有低质量示例,如果一味地强化边界框对低质量示例的回归,显然会危害模型检测性能的提升。Focal-EIoU v1 被提出以解决这个问题,但由于其聚焦机制是静态的,并未充分挖掘非单调聚焦机制的潜能。

⭐️基于这个观点,我们提出了动态非单调的聚焦机制,设计了 Wise-IoU (WIoU)。动态非单调聚焦机制使用“离群度”替代 IoU 对锚框进行质量评估,并提供了明智的梯度增益分配策略。该策略在降低高质量锚框的竞争力的同时,也减小了低质量示例产生的有害梯度。这使得 WIoU 可以聚焦于普通质量的锚框,并提高检测器的整体性能。将WIoU应用于最先进的单级检测器 YOLOv7 时,在 MS-COCO 数据集上的 AP-75 从 53.03% 提升到 54.50%

目前的Wise-IoU一共有三个版本分别是v1、v2、v3=

1.2 ✨WIOU解决的问题

🔥在数据标准的过程中,存在一下物体标准的不够正确,会有一些目标物体标注的质量很差,如下:
在这里插入图片描述
一个性能良好的模型在为低质量示例生成高质量锚框时会产生较大的 L I o U \mathcal{L}_{I o U} LIoU(iou损失)。如果单调 FM 为这些锚框分配较大的梯度增益,则模型的学习将受到损害。

在性能提升上,数据集的标注质量越差 (当然差到一定程度就不叫数据集了),WIoU 相对其它边界框损失的表现越好。

1.3 ⭐️论文实验结果

☀️CIoU、SIoU 的 v2 使用和 WIoU v2 一致的单调聚焦机制,v3 使用和 WIoU v3 一致的动态非单调聚焦机制,详见论文的消融实验,在计算速度上,WIoU 所增加的计算成本主要在于聚焦系数的计算、IoU 损失的均值统计。在实验条件相同时,WIoU 因为没有对纵横比进行计算反而有更快的速度,WIoU 的计算耗时为 CIoU 的 87.2%。

对比CIOU和SIOU等方法,WIOU的AP50要优于之前的边界框损失。
在这里插入图片描述

1.4 🎯论文方法

🚀该本文所涉及的聚焦机制有以下几种:

  • 静态:当边界框的 IoU 为某一指定值时有最高的梯度增益,如 Focal EIoU v1
  • 动态:享有最高梯度增益的边界框的条件处于动态变化中,如 WIoU v3
  • 单调:梯度增益随损失值的增加而单调增加,如 Focal loss
  • 非单调:梯度增益随损失值的增加呈非单调变化

WIoU v1 构造了基于注意力的边界框损失,WIoU v2 和 v3 则是在此基础上通过构造梯度增益 (聚焦系数) 的计算方法来附加聚焦机制。

1.4.1☀️Wise-IoU v1

由于训练数据不可避免地包含低质量示例,距离长宽比等几何因素会加剧对低质量示例的惩罚,从而降低模型的泛化性能。一个好的损失函数应该在锚框与目标框重合良好时削弱几何因素的惩罚,并且较少的训练干预将使模型获得更好的泛化能力。基于此,我们构建距离注意力,并获得具有两层注意力机制的WIoU v1:

  • R W IoU  ∈ [ 1 , e ) \mathcal{R}_{W \text { IoU }} \in[1, e) RW IoU [1,e) :显著放大普通质量锚框的 L I o U \mathcal{L}_{I o U} LIoU
  • L I o U ∈ [ 0 , 1 ] \mathcal{L}_{I o U} \in[0,1] LIoU[0,1]:显着降低高质量anchor box的RWIoU,并且当anchor box与目标框重合良好时,它更注重中心点之间的距离。

L W I o U v 1 = R W I o U L I o U R W I o U = exp ⁡ ( ( x − x g t ) 2 + ( y − y g t ) 2 ( W g 2 + H g 2 ) ∗ ) \begin{aligned}&\mathcal{L}_{WIoUv1}=\mathcal{R}_{WIoU}\mathcal{L}_{IoU}\\&\mathcal{R}_{WIoU}=\exp(\frac{(x-x_{gt})^2+(y-y_{gt})^2}{(W_g^2+H_g^2)^*})\end{aligned} LWIoUv1=RWIoULIoURWIoU=exp((Wg2+Hg2)(xxgt)2+(yygt)2)

其中,Wg,Hg是最小的封闭框的大小。为了防止RWIoU产生阻碍收敛的梯度,Wg,Hg从计算图中分离出来(上标∗表示此操作)。因为它有效地消除了阻碍收敛的因素,所以没有引入新的度量,比如宽高比。
在这里插入图片描述

1.4.2☀️Wise-IoU v2

🚀Focal Loss 设计了一种针对交叉熵的单调聚焦机制,有效降低了简单示例对损失值的贡献。这使得模型能够聚焦于困难示例,获得分类性能的提升。该论文类似地构造了单调聚焦系数 L I o U γ ∗ \mathcal{L}_{IoU}^{\gamma*} LIoUγ L W I o U v 1 \mathcal{L}_{WIoUv1} LWIoUv1
L W I o U v 2 = L I o U γ ∗ L W I o U v 1 , γ > 0 \mathcal{L}_{WIoUv2}=\mathcal{L}_{IoU}^{\gamma*}\mathcal{L}_{WIoUv1},\gamma>0 LWIoUv2=LIoUγLWIoUv1,γ>0

由于增加了聚焦系数,WIoU v2反向传播的梯度也发生了变化:
∂ L W I o U v 2 ∂ L I o U = L I o U γ ∗ ∂ L W I o U v 1 ∂ L I o U , γ > 0 \frac{\partial\mathcal{L}_{WIoUv2}}{\partial\mathcal{L}_{IoU}}=\mathcal{L}_{IoU}^{\gamma*}\frac{\partial\mathcal{L}_{WIoUv1}}{\partial\mathcal{L}_{IoU}},\gamma>0 LIoULWIoUv2=LIoUγLIoULWIoUv1,γ>0

❗️注意,梯度增益为 r = L I o U γ ∗ ∈ [ 0 , 1 ] r=\mathcal{L}_{IoU}^{\gamma*}\in[0,1] r=LIoUγ[0,1]。在模型训练过程中,梯度增益随着 L I o U \mathcal{L}_{I o U} LIoU的减小而减小,导致训练后期收敛速度较慢。因此,引入 L I o U \mathcal{L}_{I o U} LIoU均值作为归一化因子:
L W I o U v 2 = ( L I o U ∗ L I o U ‾ ) γ L W I o U v 1 \mathcal{L}_{WIoUv2}=(\frac{\mathcal{L}_{IoU}^*}{\overline{\mathcal{L}_{IoU}}})^\gamma\mathcal{L}_{WIoUv1} LWIoUv2=(LIoULIoU)γLWIoUv1

🔥其中 L I o U ‾ \overline{{\mathcal{L}_{IoU}}} LIoU是具有动量m的指数移动平均值。动态更新归一化因子使梯度增益 r = ( L I o U ∗ L I o U ‾ ) γ r=(\frac{\mathcal{L}_{IoU}^{*}}{\overline{\mathcal{L}_{IoU}}})^{\gamma} r=(LIoULIoU)γ总体保持在高水平,这解决了训练后期收敛缓慢的问题。

1.4.3☀️Wise-IoU v3

动态非单调FM:锚框的离群度用 L I o U \mathcal{L}_{I o U} LIoU L I o U ‾ \overline{{\mathcal{L}_{IoU}}} LIoU的比值表示:
在这里插入图片描述

🚀离群值小意味着锚框是高质量的。我们为其分配一个小的梯度增益,以便将== BBR (边界框回归)==集中在普通质量的锚框上。此外,为异常值较大的锚框分配较小的梯度增益将有效防止低质量示例产生较大的有害梯度。我们使用 β 构造一个非单调聚焦系数并将其应用于 WIoU v1:
在这里插入图片描述

离群度β梯度增益r的映射,由超参数α、δ控制。不同的超参数可能适用于不同的模型和数据集,需要自行调整 _scaled_loss 的缺省值以找到最优解。

在这里插入图片描述
其中,当 β = δ 时,δ 使得 r = 1。如图所示,当锚框的离群度满足β=C(C为常数值)时,锚框将享有最高的梯度增益。由于 L I o U \mathcal{L}_{I o U} LIoU是动态的,因此锚框的质量划分标准也是动态的,这使得 WIoU v3 能够在每一个时刻做出最符合当前情况的梯度增益分配策略。

二、2️⃣如何添加WIOU损失函数

2.1 🎓 修改bbox_iou函数

📌首先找到utils文件夹下的metrics.py文件,然后找到该python文件下的bbox_iou函数

在这里插入图片描述

📌然后将原始的bbox_iou函数代码注释掉,替换成如下代码,分别是WIoU_Scale类和bbox_iou函数,其中WIoU_Scale类是相关配置参数,需要注意monotonous这个参数,当其设置不同参数所表示的WIoU的不同版本

  • monotonous =None:表示Wise-IoU v1
  • monotonous =True:表示Wise-IoU v2
  • monotonous =False:表示Wise-IoU v3
class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)# Get the coordinates of bounding boxesif xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter/(union + eps), alpha) # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2)) # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

🔥温馨提示WIOU和Focal不能同时使用,两者是互斥的,所以不能使用Focal项,在代码中也体现出来。

在这里插入图片描述

2.2 ✨修改__call__中iou函数

📌找到utils文件夹下面的loss.py损失函数计算文件,在该文件中找到ComputeLoss类下面的__call__函数,在__call__()函数里面找到红框部分的代码。

在这里插入图片描述

📌将红框内容替换成如下代码:

# ============替换WIoU之后的代码====================
iou = bbox_iou(pbox, tbox[i], WIoU=True, scale=True)
if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach().squeeze() * (1 - iou[0].squeeze())).mean()iou = iou[0].squeeze()else:lbox += (iou[0] * iou[1]).mean()iou = iou[2].squeeze()
else:lbox += (1.0 - iou.squeeze()).mean()  # iou lossiou = iou.squeeze()# ==============================================

❗️注意:scale需要设置为True,它是wiou中的一个缩放参数

三、3️⃣实验测试结果

🚀 这里一共做了三次实验,分别是Wise-IoU v1、Wise-IoU v2、Wise-IoU v3三个不同版本方法训练钢轨表面疵点的结果。

原始CIOU实验结果
F1置信度分数为0.71、map@0.5=0.779
在这里插入图片描述
Wise-IoU v1实验结果
F1置信度分数为0.72、map@0.5=0.863,F1置信度分数变化不大,但是map值增加最多
在这里插入图片描述
Wise-IoU v2实验结果
F1置信度分数为0.76、map@0.5=0.841,虽然map值没有 v1提升的那么大,但是F1置信度分数增长最多
在这里插入图片描述
Wise-IoU v3实验结果
F1置信度分数为0.74、map@0.5=0.844。
在这里插入图片描述
总结
🚀 不管是Wise-IoU 哪一个版本,对于数据集的精确度、召回率、map值等指标都有所提升。

在这里插入图片描述


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/757153.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jmeter之并发和顺序执行与特殊线程组-第四天

1.jmeter的并发执行 并发执行:多个线程同时执行,不能确定谁先结束 以上案例中http请求里面没有写任何内容,只是为了看这个并发执行的效果 2.jmeter的顺序执行 顺序执行:多个线程顺序执行 再测试计划中勾选“独立运行每个线程组…

VBA之Word应用:利用Bookmark属性返回选择区域的开始和结束位置

《VBA之Word应用》(版权10178982),是我推出第八套教程,教程是专门讲解VBA在Word中的应用,围绕“面向对象编程”讲解,首先让大家认识Word中VBA的对象,以及对象的属性、方法,然后通过实…

什么是子网掩码、ip地址的网段?如何区分?

IP地址优化网写了很多相关的文章。 有些朋友对于子网掩码、IP地址网段等还不太了解,我们来看看网友经常问到的一些相关问题。 255.255.255.192 的位掩码是什么? 1.什么是子网掩码? 在了解IP地址的网段之前,我们先来了解一下子网…

在sql server 2016 always on集群里新增一个数据库节点

本篇博客有对应的word版本,有需要的可以点击这里下载。 一 环境介绍 二 操作步骤 2.1 在新节点上安装sql server软件 略 2.2 在新节点上开启‘故障转移群集功能’ 打开‘服务管理器’: 点击‘添加角色和功能’: 勾选’DNS服务器’&#…

QT配置libtorch(一步到位!!!防止踩坑)

QT配置libtorch Qt下载QT配置MSVCQT配置Libtorch Qt下载 Qt点击下载 Qt的安装选择MSVC2017 64-bit(一定要安装,这关乎后面的配置!!!),其他的根据自己的选择进行安装 QT配置MSVC Visual Studio点击安装 这里需要安装VS以…

元宇宙VR数字化艺术展降低办展成本

元宇宙AI时代已经来临,越来越多人期待在元宇宙数字空间搭建一个属于自己的虚拟展厅,元宇宙虚拟展厅搭建平台是VR公司深圳华锐视点为企业研发的可编辑工具,那么元宇宙虚拟展厅搭建平台有哪些新突破? 元宇宙虚拟展厅搭建平台采用了先进的web3D…

(一)基于IDEA的JAVA基础2

通过记事本练习我们可以大致了解java的运行过程 使用工具开发: 常用工具:Eclipse, MyEclipse,IDEA 这里我们用的开发工具是IDEA,其下载和破解方式在我们这个平台上一搜就有,这个我就不多言了,其他老师都比我有权威性,因为我当初…

统计学基础概念和在AI中的应用

基本概念 统计学是一门研究数据收集、分析、解释和展示的科学,它提供了一套方法论,用于理解数据并从数据中得出结论。统计学在各个领域都有应用,包括经济学、医学、工程学、社会科学等。以下是统计学的一些基本概念: 描述性统计…

文件上传基础篇

文件上传基础篇 文件上传漏洞原理 ​ 目标网站存在文件上传接口,但是对用户上传的文件没有做仔细甄别,导致黑客可以根据此功能点直接上传木马到网站服务器,造成危害 文件上传存在点 ​ 通常有头像上传,pdf上传 文件上传防护 …

【数据结构和算法初阶(C语言)】二叉树的顺序结构--堆的实现/堆排序/topk问题详解---二叉树学习日记②1

目录 ​编辑 1.二叉树的顺序结构及实现 1.1 二叉树的顺序结构 2 堆的概念及结构 3 堆的实现 3.1堆的代码定义 3.2堆插入数据 3.3打印堆数据 3.4堆的数据的删除 3.5获取根部数据 3.6判断堆是否为空 3.7 堆的销毁 4.建堆以及堆排序 4.1堆排序---是一种选择排序 4.2升序建大堆&a…

鸿蒙实战开发:【浏览器制作】

浏览器 介绍 本示例使用[ohos.systemparameter]接口和[Web组件]展示了一个浏览器的基本功能,展示网页,根据页面历史栈前进回退等。 效果预览 首页打开网址 使用说明: 连接Wifi,启动应用,展示默认页面内容;点击默认页面的图标跳转到对应…

C语言经典算法-7

文章目录 其他经典例题跳转链接36.排序法 - 改良的选择排序37.快速排序法(一)38.快速排序法(二)39.快速排序法(三)40.合并排序法 其他经典例题跳转链接 C语言经典算法-1 1.汉若塔 2. 费式数列 3. 巴斯卡三…

AnyGo for Mac最新激活版:位置模拟软件打破地域限制

AnyGo for Mac,一款专为Mac用户打造的位置模拟软件,让您能够轻松打破地域限制,畅享无限可能。 软件下载:AnyGo for Mac v7.0.0最新激活版 通过AnyGo,您可以随时随地模拟出任何地理位置,无论是国内热门景点还…

(三)pulsar可视化消息管理工具

官网:https://pulsar.apache.org/docs/3.2.x/administration-pulsar-manager/ 版本: 3.2.x 安装和配置 拉取容器 docker pull apachepulsar/pulsar-manager:v0.3.0运行容器: # pulsar消息管理工具 CURRENT_DIR$(cd dirname $0; pwd) BASE_DIR$(cd $(…

【07】进阶html5

HTML5 包含两个部分的更新,分别是文档和web api 文档 HTML5 元素表 元素语义化 元素语义化是指每个 HTML 元素都代表着某种含义,在开发中应该根据元素含义选择元素 元素语义化的好处: 利于 SEO(搜索引擎优化)利于无障碍访问利于浏览器的插件分析网页新增元素 多媒体…

手撕算法-判断是不是完全二叉树

描述&#xff1a;思路&#xff1a;采用层序遍历&#xff0c;找到一个为空的标记&#xff0c;如果后面还有值&#xff0c;就代表不是完全二叉树。代码&#xff1a; public boolean isCompleteTree (TreeNode root) {// write code hereif(root null) return true;Queue<Tree…

Go语言学习13-常见软件架构的实现

Go语言学习13-常见软件架构的实现 架构模式 An architectural pattern is a general, reusable solution to a commonly occurring problem in software architectural within a given context. ——wikipedia Pipe-Filter 架构 Pipe-Filter 模式 非常适合于数据处理及数据分…

[Qt学习笔记]Qt下使用Halcon实现采图时自动对焦的功能(Brenner梯度法)

目录 1、介绍2、实现方法2.1 算法实现过程2.2 模拟采集流程 3、总结4、代码展示 1、介绍 在机器视觉的开发中&#xff0c;现在有很多通过电机去做相机的聚焦调节&#xff0c;对比手工调节&#xff0c;自动调节效果更好&#xff0c;而且其也能满足设备自动的需求&#xff0c;尤…

HCIA ——VLAN实验

一 、 实验需求 1.PC1和PC3所在接口为access接口&#xff1b;属于vlan 2 PC2-4-5-6处于同一网段&#xff1b;其中PC2可以访问PC4-5-6 PC4可以访问PC5不能访问PC6 PC5不能访问PC6 3.PC1-PC3与PC2-4-5-6不在同一个网段 4.所有PC均使用DHCP获取IP地址&#xff0c;且PC1可以正常访问…

mysql之基本概念与安装

一 数据库的基本概念 1.1 数据 记录个体的信息 1.2 表 存放信息的集合&#xff0c;行于与列 1.3 数据库 数据库就是表的集合。它是以一定的组织方式存储的相互有关的数据集合 1.4 数据库管理系统 数据库管理系统&#xff08;DatabaseManagementSystem&#xff0c;DBMS&…