【No.13】蓝桥杯二分查找|整数二分|实数二分|跳石头|M次方根|分巧克力(C++)

二分查找算法
知识点
  • 二分查找原理讲解
  • 在单调递增序列 a 中查找 xx 的后继
  • 在单调递增序列 a 中查找 xx 的前驱
二分查找算法讲解

枚举查找即顺序查找,
实现原理是逐个比较数组 a[0:n-1] 中的元素,直到找到元素 x 或搜索整个数组后确定 x 不在其中。最坏情况下需要比较 N 次,时间复杂度是 O(n),属于线性阶算法。
而二分查找是一种折半查找方法。
该方法将 N 个元素分成大致相等的两部分,选取中间元素与查找的元素进行比较。

  • 如果相等,则查找成功;
  • 如果查找元素小于中间元素,则在左半区继续查找;
  • 如果查找元素大于中间元素,则在右半区继续查找。
    每次都将范围缩小至原来的一半,因此时间复杂度是 O ( log ⁡ 2 n ) O(\log_{2}n) O(log2n)
    需要注意的是,二分查找的前提是数组有序,一般是从小到大排列。
    折半查找的基本思想:
    在有序表中(low, high, low<=high),取中间记录即 a[(high+low)/2] 作为比较对象。
  • 若给定值与中间记录的关键码相等,则查找成功。
  • 若给定值小于中间记录的关键码,则在中间记录的左半区继续查找。
  • 若给定值大于中间记录的关键码,则在中间记录的右半区继续查找。
    不断重复上述过程,直到查找成功,或所查找的区域无记录,查找失败。
    二分查找的特征:
  1. 答案具有单调性。
  2. 二分答案的问题往往有固定的问法,例如:令最大值最小(最小值最大),求满足条件的最大(小)值等。
    折半查找一般过程:
    图片描述
Step 1:假设存在一个有序数组:
下标[ 0   1   2   3   4   5   6   7   8    9    10   11   12 ]
数据[ 7   14  18  21  23  29  31  35   38   42   46   49  52 ]↑                                                   ↑low=0                                              high=12mid=(low+high)/2mid=(0+12)/2mid=6[mid]=31 > 14,所以选择左半部分操作:此时令low不变,high=mid-1=5Step 2:下标[ 0   1   2   3   4   5   6   7   8    9    10   11   12 ]
数据[ 7   14  18  21  23  29  31  35   38   42   46   49  52 ]↑                   ↑low=0                 high=5mid=(low+high)/2mid=(0+6)/2mid=3[mid]=21 > 14,所以选择左半部分操作:此时令low不变,high=mid-1=2Step 3:下标[ 0   1   2   3   4   5   6   7   8    9    10   11   12 ]
数据[ 7   14  18  21  23  29  31  35   38   42   46   49  52 ]↑       ↑low=0    high=2mid=(low+high)/2mid=(0+2)/2mid=1[mid]=14 = 14  找到答案操作:返回下标

整数二分法常用算法模板

// 在单调递增序列a中查找>=x的数中最小的一个(即x或x的后继)
while (low < high)
{int mid = (low + high) / 2;if (a[mid] >= x)high = mid;elselow = mid + 1;
}// 在单调递增序列a中查找<=x的数中最大的一个(即x或x的前驱)
while (low < high)
{int mid = (low + high + 1) / 2;  //向右+1个,以便于判断区间的时候落到右侧// int mid = left + (right - left) / 2;if (a[mid] <= x)low = mid;elsehigh = mid - 1;
}

此处我们先分整数的二分查找法的常用模版,关于实数的部分,我们后面再讲。

为什么采用这一套代码的而不是采用查找等于的 X

是因为这样的适用范围更广,当有 X 时这套代码就返回 X 的位置。如果没有 X,就返回 <=x 的数中最大的一个或者 >=x 的数中最小的一个。

跳石头

【题目描述】
“跳石头"比赛在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有n块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。
为了提高比赛难度,组委会计划移走些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走m块岩石(不能移走起点和终点的岩石)
【输入描述】
输入文件第一行包含三个整数L,N,M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。
接下来 N行,每行一个整数,第 i行的整数 Di(0<Di<L)表示第 i 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。
其中,0≤M≤N≤5x104,1≤L≤109
【输出描述】
输出只包含一个整数,即最短跳跃距离的最大值。

题目解析

二分法套路题:最小值最大化,最大值最小化
在n块岩石中移走m个石头,有很多种移动方法
在第i种移动方法中,剩下的石头之间的距离,有一个最小距离ai.
在所有移动方法的最小距离ai中,问最大的ai是多少
在所有可能的最小值中,找最大的那个,就是最小值最大化

在单调递增的序列中,找到满足某个条件的最大的那个值

  1. 暴力法:找所有的组合,在n块岩石中选m个石头的组合,情况太多,超时
  2. 二分思路:不找搬走石头的组合,而是给出一个距离d,检查能不能搬走m块石头而得到最短距离d。把所有的d都试一遍,肯定能找到一个最短的d,用二分法找这个d

最短距离ai,最小可以取到0,最大可以取到L,不管用什么方法,ai一定是这个区间上的一个数
这个区间是一个递增的,有序的,
二分这个区间,找到一个ai,检查这个ai是不是符合题意:是不是能通过n块岩石中移走m块岩石能构造出,最短距离是ai的这么一种情况

如何判断能否通过n块石头中一走m块石头来实现

比如说现在要找的ai是3,有5块石头,它们之间的距离是5,3,4,2,显然5,3,4满足条件,但是2不满足,所以要移走第四块石头,变成5,3,6,可以通过这样的方法来判断是否要移走某块石头
满足了3以后,因为要找最大的,所以解下来判断4,这一组石头里的3就不符合了,移走第二块石头,变成8,6,这样就需要移走两块石头
如果m=2的话,就满足条件,如果m=1就不满足
所以m=1的话,ai就只能是3,m=2的话,可以是4

  1. 如果是用暴力法去找的话,就是从1开始一直枚举到L
  2. 1~L是一个有序的枚举,所以可以通过二分去做
    1~L。找mid,看这个mid能不能通过移走m块来实现,可以的话,就在右边的区间继续去找,不能移走的话,就从左区间开始找
代码
#include <cstdio>
int len, n, m;
int stone[50005];
bool check(int d)  //检查距离d是否合适
{int num = 0;  //num记录搬走石头的数量int pos = 0;  //当前站立的石头for (int i = 1; i <= n; i ++){if (stone[i]-pos < d)num++;  //第i块石头可以搬走elsepos = stone[i];  //第i块石头不能搬走}if (num <= m)return true;  //要移动的石头比m少,满足条件elsereturn false;  //要移动的石头比m多,不满足条件
}int main()
{scanf("%d%d%d", &len, &n, &m);for (int i = 1; i <= n; i ++){scanf("%d", &stone[i]);}int L = 0, R = len, mid;while (L < R){mid = (L + R + 1) / 2;//查找满足条件的最大的那个值,所以向右贪心if (check(mid)){L = mid;  //满足条件,说明mid小了,调大一点}elseR = mid - 1;  //不满足条件,说明mid大了,调小一点}printf ("%d\n", L);return 0;
}
M 次方根

题目描述:
小 A 最近在学高等数学,他发现了一道题,求三次根号下27​。现在已知,小 A 开始计算,1 的三次方得1,2 的三次方得8,3 的三次方得27,然后他很高兴的填上了3。
接着他要求5次根号下164​。然后他开始1 的三次方得1,2 的三次方得8,3 的三次方得27…
直到他算到了秃头,也没有找到答案。
这时一旁的小 B 看不下去了,说这题答案又不是个整数。小 A 震惊,原来如此。作为程序高手的小 A,打算设计一个程序用于求解M次根下N的值。
但是由于要考虑精度范围,答案必须要保留7位小数,连三次根号下27都要掰手指的小 A 又怎么会设计呢。请你帮小 A 设计一个程序用于求解 M 次根号N。
数据范围:
1≤N≤1e5
1≤M≤100
M < N
要求输入:

输入描述:
第一行输入整数 N 和 M,数据间用空格隔开。

要求输出:

输出描述:
输出一个整数,并保留 7 位小数。

样例:

输入样例:
27 3
输出样例:
3.000000

运行限制:

最大运行时间:1s
最大运行内存: 256M
注意:
1. 请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
2. 不要调用依赖于编译环境或操作系统的特殊函数。
3. 所有依赖的函数必须明确地在源文件中。
4. 不能通过工程设置而省略常用头文件。
题目分析

根据前面的知识,我们要找到一个具有单调性的数列,去二分。这个题的关键是我们要去二分什么,这里可以二分的是 a^M 中的 a,所以我们要先想办法设计出用于处理实数二分的代码。
这里给大家两个模板,都可以大家选择一个使用即可:

//模版一:实数域二分,设置eps法//令 eps 为小于题目精度一个数即可。比如题目说保留4位小数,0.0001 这种的。那么 eps 就可以设置为五位小数的任意一个数 0.00001- 0.00009 等等都可以。//一般为了保证精度我们选取精度/100 的那个小数,即设置 eps= 0.0001/100 =1e-6while (l + eps < r)  //l加上这个精度<r,就继续二分
//如果不小于r,就说明l-r<eps,代表这两个数之间的精度差距不会超过0.0001,代表找到这个值了
{double mid = (l + r) / 2;if (pd(mid))r = mid;elsel = mid;
}//模版二:实数域二分,规定循环次数法
//通过循环一定次数达到精度要求,这个一般 log_2 N < 精度即可。N 为循环次数,在不超过时间复杂度的情况下,可以选择给 N 乘一个系数使得精度更高。
//为什么循环100次一定可以,二分是每次除以2,除100次2,也就是做100次log_2n,1024是10次。10^6约20次,10^9约30次,所以100次一定可以满足for (int i = 0; i < 100; i++)
{double mid = (l + r) / 2;if (pd(mid))r = mid;elsel = mid;
}

模板讲完了,然后我们就要考虑判定条件了,怎样判定是否存在满足大于平均值的区间。当然这个题你可以使用语言中自带开方软件,但是我们还是联系一下实数的二分代码。
关于判定条件,我们应该设计一个代码用于比较 a^m 和 N 的大小关系。
在我们代码中:

if (pd(mid))r = mid;
elsel = mid;

pd 成功的情况,一定是 pd 的mid 符合条件,且小于 mid 的一定符合条件。因此我们要在大于mid 中继续查找,找到更大的mid。
所以我们可以设计出如下判定条件:

double pd(double a,int m)
{double c=1;while(m>0)  //计算a的m次方{c=c*a;m--;}if(c>=n) return true;elsereturn false;
}
代码解答
#include <cstdio>
#include <iostream>
#include<iomanip> //用于浮点数输出
using namespace std;double n,l,r,mid;
double eps=1e-8;bool pd(double a,int m)
{double c=1;while(m>0) {c=c*a;m--;}if(c>=n)  //return true;elsereturn false;
}int main()
{int m;cin>>n>>m;
//设置二分边界l=0,r=n;//实数二分while (l + eps < r){double mid = (l + r) / 2;if (pd(mid,m))r = mid;elsel = mid;}cout << fixed << setprecision(7) << l;//一般使用print//printf("%x.yf",n)//其中X是固定整数长度,小数点前的整数位数不够,会在前面补0//y是保留小数位数,不够补零//printf("%.7f",l);return 0;
}

分巧克力

2017 年省赛真题链接。
题目描述: 儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N 块巧克力,其中第 i 块是 Hi​×Wi 的方格组成的长方形。为了公平起见,
小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:

  1. 形状是正方形,边长是整数;
  2. 大小相同;
    例如一块 6x5 的巧克力可以切出 6 块 2x2 的巧克力或者 2 块 3x3 的巧克力。
    当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
    输入描述:
    第一行包含两个整数 N,K (1≤N,K≤10^5)。
    以下 N 行每行包含两个整数 Hi​,Wi​ (1≤Hi​,Wi​≤10^5)。
    输入保证每位小朋友至少能获得一块 1x1 的巧克力。
    输出描述:
    输出切出的正方形巧克力最大可能的边长。
    输入输出样例:
    示例:

输入

2 10 6 5 5 6

输出

2

运行限制:

  • 最大运行时间:2s
  • 最大运行内存: 256M
    注意:
  1. 请严格按要求输出,不要画蛇添足地打印类似:“请您输入…”的多余内容。
  2. 不要调用依赖于编译环境或操作系统的特殊函数。
  3. 所有依赖的函数必须明确地在源文件中
  4. 不能通过工程设置而省略常用头文件。
题目分析

简单思路,边长的最大规模为 100000;我们可以枚举出所有的情况。按从大到小的顺序进行切割,直到找到满足要求的巧克力边长。
在判断边长是否满足条件时:求一块长方形(h∗w)最多被分成的正方形(len∗len)巧克力个数为:
cnt=(h/len)∗(w/len)
但是使用朴素算法枚举时间复杂度O(n)∗O(n)=O(n^2) 会超时,所以改用 2 分查找法,这找到符合要求的最大的一个。
即用在单调递增序列 a 中查找 <=x 的数中最大的一个(即 x 或 x 的前驱)即可,原本这里的条件是 <=x ,我们将其换成验证即可。

代码解答
#include<bits/stdc++.h>using namespace std;
const int MAXN=100010;
int n,k;
int h[MAXN],w[MAXN];bool pd(int l)
{int sum=0;for(int i=0; i<n; i++){sum+=(h[i]/l)*(w[i]/l);if(sum>=k){return true;}}return false;
}int main()
{cin>>n>>k;for(int i=0; i<n; i++)cin>>h[i]>>w[i];//找到二分查找的上界int high=0;for(int i=0; i<n; i++){high=max(high,h[i]);high=max(high,w[i]);}// 二分下届由题意可得至少为1int low=1;// 由于本题目就是求符合要求的Mid 值所以要将mid定义在二分查找外边int mid=0;while(low<high){mid = (low + high+1) / 2;if(pd(mid))low=mid;elsehigh = mid - 1;//        cout<<low<<" "<<high<<endl;}//因为low=high所以输出哪一个都一样cout<<low;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/755734.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CPU设计实战—异常处理指令

异常类型以及精确异常的处理 异常有点像中断&#xff0c;处理完还要回到原来的状态&#xff0c;所以需要对之前的状态进行保存。本CPU主要实现对以下异常的处理&#xff1a; 1.外部硬件中断 2.复位异常 3.系统调用异常&#xff08;发生在译码阶段&#xff09; 4.溢出异常&…

做好外贸网站SEO优化,拓展海外市场

随着全球贸易的发展和互联网的普及&#xff0c;越来越多的外贸企业将目光投向了网络&#xff0c;希望通过建立网站来拓展海外市场。然而&#xff0c;在竞争激烈的外贸市场中&#xff0c;要让自己的网站脱颖而出&#xff0c;吸引更多的目标客户&#xff0c;就需要进行有效的SEO优…

openGauss学习笔记-246 openGauss性能调优-SQL调优-经验总结:SQL语句改写规则

文章目录 openGauss学习笔记-246 openGauss性能调优-SQL调优-经验总结&#xff1a;SQL语句改写规则246.1 使用union all代替union246.2 join列增加非空过滤条件246.3 not in转not exists246.4 选择hashagg246.5 尝试将函数替换为case语句246.6 避免对索引使用函数或表达式运算2…

面试算法-50-二叉树的最大深度

题目 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3 解 class Solution {public int maxDepth(TreeNo…

《算法设计与分析第二版》100行 C语言实现 广度度优先算法 BFS——最短距离

抄录自课本P157页。 #include <stdio.h> #define MAXQ 100 // 队列大小 #define MAxN 10 // 最大迷宫大小 int n8; // 迷宫大小 char Maze [MAxN][MAxN] {{O,X,X,X,X,X,X,X,},{O,O,O,X,O,X,O,X,},{X,X,O,O,O,X,O,X,},{X,X,O,X,O,X,X,X,},…

HDFS概述及常用shell操作

HDFS 一、HDFS概述1.1 HDFS适用场景1.2 HDFS优缺点1.3 HDFS文件块大小 二、HDFS的shell操作2.1 上传2.2 下载2.3 HDFS直接操作 一、HDFS概述 1.1 HDFS适用场景 因为HDFS里所有的文件都是维护在磁盘里的 在磁盘中对文件的历史内容进行修改 效率极其低(但是追加可以) 1.2 HDF…

走近 AI Infra 架构师:在高速飞驰的大模型“赛车”上“换轮子”的人

如果把大模型训练比作 F1 比赛&#xff0c;长凡所在的团队就是造车的人&#xff0c;也是在比赛现场给赛车换轮子的人。1% 的训练提速&#xff0c;或者几秒之差的故障恢复时间&#xff0c;累积起来&#xff0c;都能影响到几百万的成本。长凡说&#xff1a;“大模型起来的时候&am…

算法详解——选择排序和冒泡排序

一、选择排序 选择排序算法的执行过程是这样的&#xff1a;首先&#xff0c;算法遍历整个列表以确定最小的元素&#xff0c;接着&#xff0c;这个最小的元素被置换到列表的开头&#xff0c;确保它被放置在其应有的有序位置上。接下来&#xff0c;从列表的第二个元素开始&#x…

事件高级、

文章目录 1.注册事件&#xff08;绑定事件&#xff09;addEventListener 事件监听方式attachEvent 事件监听方式、兼容性解决方案 * 2.删除事件&#xff08;解绑事件&#xff09;删除事件的方式删除事件兼容性解决方案 * 3.DOM事件流4.事件对象使用语法兼容性方案*常见属性和方…

边缘计算+WEB端应用融合:AI行为识别智能监控系统搭建指南 -- 边缘设备图像识别及部署(二)

专栏目录 边缘计算WEB端应用融合&#xff1a;AI行为识别智能监控系统搭建指南 – 整体介绍&#xff08;一&#xff09; 边缘计算WEB端应用融合&#xff1a;AI行为识别智能监控系统搭建指南 -- 边缘图像识别及部署&#xff08;二&#xff09; 前言边缘图像识别与推流整体思路原始…

海康威视添加新摄像头到原建的网络监控平台中

一、适用场景 1、企业已经存在一套海康威视的监控网络系统&#xff1b; 2、根据业务的需求&#xff0c;要新增加一些摄像头&#xff1b; 3、原施工方忙碌&#xff0c;为新增加的摄像头施工成本较高&#xff1b; 4、新增加海康威视的摄像头视频监控&#xff0c;保存在原建的监控…

构建强大的API:Django中的REST框架探究与实践【第146篇—Django】

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 构建强大的API&#xff1a;Django中的REST框架探究与实践 在当今的Web开发中&#xff0c;构…

Apache SeaTunnel MongoDB CDC 使用指南

随着数据驱动决策的重要性日益凸显&#xff0c;实时数据处理成为企业竞争力的关键。SeaTunnel MongoDB CDC(Change Data Capture) 源连接器的推出&#xff0c;为开发者提供了一个高效、灵活的工具&#xff0c;以实现对 MongoDB 数据库变更的实时捕获和处理。 本文将深入探讨该连…

Jackson 2.x 系列【1】概述

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 前言2. 什么是 JSON3. 常用 Java JSON 库4. Jackson4.1 简介4.2 套件4.3 模块4.…

prompt开发生命周期

1.定义任务场景和成功标准 任务场景可分为简单任务&#xff1a;实体抽取、qa等 复杂任务&#xff1a;代码生成、创意写作等 在定义任务后&#xff0c;就要定义模型实现该任务的成功标准&#xff1a; 模型表现和准确率&#xff1b;延迟&#xff1b;价格。 2.开发测试用例 多…

Vue2(七):超详细vue开发环境搭建(win7),nodejs下载与安装,安装淘宝镜像(报错已解决),配置脚手架

一、安装node.js 本来想粗略写一下的&#xff0c;但是搭建脚手架的时候&#xff0c;遇到了很多问题&#xff0c;浪费快两天时间&#xff0c;记录一下自己的解决办法希望对你们有帮助&#xff01; 1.下载nodejs 安装包下载链接【CNPM Binaries Mirror】 下载我划线的这个&am…

代码随想录算法训练营第25天| 216.组合总和III、17.电话号码的字母组合

216.组合总和III 题目链接&#xff1a;组合总和III 题目描述&#xff1a;找出所有相加之和为 n **的 k ****个数的组合&#xff0c;且满足下列条件&#xff1a; 只使用数字1到9每个数字 最多使用一次 返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次&#xff0c…

2024热门外贸独立站wordpress模板

工艺品wordpress外贸主题 简约大气的wordpress外贸主题&#xff0c;适合做工艺品进出品外贸的公司官网使用。 https://www.jianzhanpress.com/?p5377 日用百货wordpress外贸主题 蓝色大气的wordpress外贸主题&#xff0c;适合做日用百货的外贸公司搭建跨境电商网站使用。 …

Qt教程 — 3.3 深入了解Qt 控件:Input Widgets部件(2)

目录 1 Input Widgets简介 2 如何使用Input Widgets部件 2.1 QSpinBox组件-窗口背景不透明调节器 2.2 DoubleSpinBox 组件-来调节程序窗口的整体大小 2.3 QTimeEdit、QDateEdit、QDateTimeEdit组件-编辑日期和时间的小部件 Input Widgets部件部件较多&#xff0c;将分为三…

centos上安装Docker

0.安装Docker Docker 分为 CE 和 EE 两大版本。CE 即社区版&#xff08;免费&#xff0c;支持周期 7 个月&#xff09;&#xff0c;EE 即企业版&#xff0c;强调安全&#xff0c;付费使用&#xff0c;支持周期 24 个月。 Docker CE 分为 stable test 和 nightly 三个更新频道…