openGauss学习笔记-246 openGauss性能调优-SQL调优-经验总结:SQL语句改写规则

文章目录

    • openGauss学习笔记-246 openGauss性能调优-SQL调优-经验总结:SQL语句改写规则
      • 246.1 使用union all代替union
      • 246.2 join列增加非空过滤条件
      • 246.3 not in转not exists
      • 246.4 选择hashagg
      • 246.5 尝试将函数替换为case语句
      • 246.6 避免对索引使用函数或表达式运算
      • 246.7 尽量避免在where子句中使用以下内容
      • 246.8 对复杂SQL语句进行拆分

openGauss学习笔记-246 openGauss性能调优-SQL调优-经验总结:SQL语句改写规则

根据数据库的SQL执行机制以及大量的实践,总结发现:通过一定的规则调整SQL语句,在保证结果正确的基础上,能够提高SQL执行效率。如果遵守这些规则,常常能够大幅度提升业务查询效率。

246.1 使用union all代替union

union在合并两个集合时会执行去重操作,而union all则直接将两个结果集合并、不执行去重。执行去重会消耗大量的时间,因此,在一些实际应用场景中,如果通过业务逻辑已确认两个集合不存在重叠,可用union all替代union以便提升性能。

246.2 join列增加非空过滤条件

若join列上的NULL值较多,则可以加上is not null过滤条件,以实现数据的提前过滤,提高join效率。

246.3 not in转not exists

not in语句需要使用nestloop anti join来实现,而not exists则可以通过hash anti join来实现。在join列不存在null值的情况下,not exists和not in等价。因此在确保没有null值时,可以通过将not in转换为not exists,通过生成hash join来提升查询效率。

如下所示,如果t2.d2字段中没有null值(t2.d2字段在表定义中not null)查询可以修改为:

SELECT * FROM t1 WHERE  NOT EXISTS (SELECT * FROM t2 WHERE t1.c1=t2.d2);

产生的计划如下:

QUERY PLAN
------------------------------
Hash Anti Join
Hash Cond: (t1.c1 = t2.d2)
->  Seq Scan on t1
->  Hash
->  Seq Scan on t2
(5 rows)

246.4 选择hashagg

查询中GROUP BY语句如果生成了groupagg+sort的plan性能会比较差,可以通过加大work_mem的方法生成hashagg的plan,因为不用排序而提高性能。

246.5 尝试将函数替换为case语句

openGauss函数调用性能较低,如果出现过多的函数调用导致性能下降很多,可以根据情况把可下推函数的函数改成CASE表达式。

246.6 避免对索引使用函数或表达式运算

对索引使用函数或表达式运算会停止使用索引转而执行全表扫描。

246.7 尽量避免在where子句中使用以下内容

尽量避免在where子句中使用!=或<>操作符、null值判断、or连接、参数隐式转换。

246.8 对复杂SQL语句进行拆分

对于过于复杂并且不易通过以上方法调整性能的SQL可以考虑拆分的方法,把SQL中某一部分拆分成独立的SQL并把执行结果存入临时表,拆分常见的场景包括但不限于:

  • 作业中多个SQL有同样的子查询,并且子查询数据量较大。
  • Plan cost计算不准,导致子查询hash bucket太小,比如实际数据1000W行,hash bucket只有1000。
  • 函数(如substr、to_number)导致大数据量子查询选择度计算不准。

👍 点赞,你的认可是我创作的动力!

⭐️ 收藏,你的青睐是我努力的方向!

✏️ 评论,你的意见是我进步的财富!

img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/755730.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面试算法-50-二叉树的最大深度

题目 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3 解 class Solution {public int maxDepth(TreeNo…

《算法设计与分析第二版》100行 C语言实现 广度度优先算法 BFS——最短距离

抄录自课本P157页。 #include <stdio.h> #define MAXQ 100 // 队列大小 #define MAxN 10 // 最大迷宫大小 int n8; // 迷宫大小 char Maze [MAxN][MAxN] {{O,X,X,X,X,X,X,X,},{O,O,O,X,O,X,O,X,},{X,X,O,O,O,X,O,X,},{X,X,O,X,O,X,X,X,},…

HDFS概述及常用shell操作

HDFS 一、HDFS概述1.1 HDFS适用场景1.2 HDFS优缺点1.3 HDFS文件块大小 二、HDFS的shell操作2.1 上传2.2 下载2.3 HDFS直接操作 一、HDFS概述 1.1 HDFS适用场景 因为HDFS里所有的文件都是维护在磁盘里的 在磁盘中对文件的历史内容进行修改 效率极其低(但是追加可以) 1.2 HDF…

走近 AI Infra 架构师:在高速飞驰的大模型“赛车”上“换轮子”的人

如果把大模型训练比作 F1 比赛&#xff0c;长凡所在的团队就是造车的人&#xff0c;也是在比赛现场给赛车换轮子的人。1% 的训练提速&#xff0c;或者几秒之差的故障恢复时间&#xff0c;累积起来&#xff0c;都能影响到几百万的成本。长凡说&#xff1a;“大模型起来的时候&am…

算法详解——选择排序和冒泡排序

一、选择排序 选择排序算法的执行过程是这样的&#xff1a;首先&#xff0c;算法遍历整个列表以确定最小的元素&#xff0c;接着&#xff0c;这个最小的元素被置换到列表的开头&#xff0c;确保它被放置在其应有的有序位置上。接下来&#xff0c;从列表的第二个元素开始&#x…

事件高级、

文章目录 1.注册事件&#xff08;绑定事件&#xff09;addEventListener 事件监听方式attachEvent 事件监听方式、兼容性解决方案 * 2.删除事件&#xff08;解绑事件&#xff09;删除事件的方式删除事件兼容性解决方案 * 3.DOM事件流4.事件对象使用语法兼容性方案*常见属性和方…

边缘计算+WEB端应用融合:AI行为识别智能监控系统搭建指南 -- 边缘设备图像识别及部署(二)

专栏目录 边缘计算WEB端应用融合&#xff1a;AI行为识别智能监控系统搭建指南 – 整体介绍&#xff08;一&#xff09; 边缘计算WEB端应用融合&#xff1a;AI行为识别智能监控系统搭建指南 -- 边缘图像识别及部署&#xff08;二&#xff09; 前言边缘图像识别与推流整体思路原始…

海康威视添加新摄像头到原建的网络监控平台中

一、适用场景 1、企业已经存在一套海康威视的监控网络系统&#xff1b; 2、根据业务的需求&#xff0c;要新增加一些摄像头&#xff1b; 3、原施工方忙碌&#xff0c;为新增加的摄像头施工成本较高&#xff1b; 4、新增加海康威视的摄像头视频监控&#xff0c;保存在原建的监控…

构建强大的API:Django中的REST框架探究与实践【第146篇—Django】

&#x1f47d;发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 构建强大的API&#xff1a;Django中的REST框架探究与实践 在当今的Web开发中&#xff0c;构…

Apache SeaTunnel MongoDB CDC 使用指南

随着数据驱动决策的重要性日益凸显&#xff0c;实时数据处理成为企业竞争力的关键。SeaTunnel MongoDB CDC(Change Data Capture) 源连接器的推出&#xff0c;为开发者提供了一个高效、灵活的工具&#xff0c;以实现对 MongoDB 数据库变更的实时捕获和处理。 本文将深入探讨该连…

Jackson 2.x 系列【1】概述

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-seata-demo 文章目录 1. 前言2. 什么是 JSON3. 常用 Java JSON 库4. Jackson4.1 简介4.2 套件4.3 模块4.…

prompt开发生命周期

1.定义任务场景和成功标准 任务场景可分为简单任务&#xff1a;实体抽取、qa等 复杂任务&#xff1a;代码生成、创意写作等 在定义任务后&#xff0c;就要定义模型实现该任务的成功标准&#xff1a; 模型表现和准确率&#xff1b;延迟&#xff1b;价格。 2.开发测试用例 多…

Vue2(七):超详细vue开发环境搭建(win7),nodejs下载与安装,安装淘宝镜像(报错已解决),配置脚手架

一、安装node.js 本来想粗略写一下的&#xff0c;但是搭建脚手架的时候&#xff0c;遇到了很多问题&#xff0c;浪费快两天时间&#xff0c;记录一下自己的解决办法希望对你们有帮助&#xff01; 1.下载nodejs 安装包下载链接【CNPM Binaries Mirror】 下载我划线的这个&am…

代码随想录算法训练营第25天| 216.组合总和III、17.电话号码的字母组合

216.组合总和III 题目链接&#xff1a;组合总和III 题目描述&#xff1a;找出所有相加之和为 n **的 k ****个数的组合&#xff0c;且满足下列条件&#xff1a; 只使用数字1到9每个数字 最多使用一次 返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次&#xff0c…

2024热门外贸独立站wordpress模板

工艺品wordpress外贸主题 简约大气的wordpress外贸主题&#xff0c;适合做工艺品进出品外贸的公司官网使用。 https://www.jianzhanpress.com/?p5377 日用百货wordpress外贸主题 蓝色大气的wordpress外贸主题&#xff0c;适合做日用百货的外贸公司搭建跨境电商网站使用。 …

Qt教程 — 3.3 深入了解Qt 控件:Input Widgets部件(2)

目录 1 Input Widgets简介 2 如何使用Input Widgets部件 2.1 QSpinBox组件-窗口背景不透明调节器 2.2 DoubleSpinBox 组件-来调节程序窗口的整体大小 2.3 QTimeEdit、QDateEdit、QDateTimeEdit组件-编辑日期和时间的小部件 Input Widgets部件部件较多&#xff0c;将分为三…

centos上安装Docker

0.安装Docker Docker 分为 CE 和 EE 两大版本。CE 即社区版&#xff08;免费&#xff0c;支持周期 7 个月&#xff09;&#xff0c;EE 即企业版&#xff0c;强调安全&#xff0c;付费使用&#xff0c;支持周期 24 个月。 Docker CE 分为 stable test 和 nightly 三个更新频道…

PlantUML Integration 编写短信服务类图

PlantUML Integration 写一个类图&#xff0c;主要功能为 1、编写一个serviceSms短信服务类&#xff1b; 2、需要用到短信的地方统一调用基建层的服务即可&#xff1b; 3、可以随意切换、增加短信厂商&#xff0c;不需要更改场景代码&#xff0c;只需要更改application.yml 里面…

13个外贸业务员常用邮件模板-订单沟通

除了报价后跟进客户&#xff0c;我们在实际工作过程当中也会遇到很多非常规性的情况&#xff0c;需要和客户及时沟通处理。 以下是13个外贸业务员常用邮件模板-订单沟通&#xff1a;你可以根据自己的行业、公司、产品情况以及自身的经验判断进行调整和完善&#xff0c;做出一套…

水下蓝牙耳机哪个牌子好?业界公认四大高口碑游泳耳机

在这个活力四溢的时代&#xff0c;人们对于健康生活方式的追求愈发热切&#xff0c;游泳作为一项兼顾休闲与健身的运动&#xff0c;深受大众喜爱。在水下世界&#xff0c;音乐的陪伴能增添游泳的乐趣&#xff0c;一款好的水下蓝牙耳机成为游泳爱好者们的新宠。 近年来&#xff…