Linux内存管理笔记----TLB

1. TLB介绍

TLB是Translation Lookaside Buffer的简称,可翻译为“地址转换后援缓冲器”,也可简称为“快表”。

简单地说,TLB就是页表的Cache,属于MMU的一部分,其中存储了当前最可能被访问到的页表项,其内容是部分页表项的一个副本。

处理器在取指或者执行访问memory指令的时候都需要进行地址翻译,即把虚拟地址翻译成物理地址。

而地址翻译是一个漫长的过程,需要遍历几个level的Translation table,从而产生严重的开销。

为了提高性能,我们会在MMU中增加一个TLB的单元,把地址翻译关系保存在这个高速缓存中,从而省略了对内存中页表的访问。

TLB存放了之前已经进行过地址转换的查询结果。 这样,当同样的虚拟地址需要进行地址转换的时候,我们可以直接在 TLB 里面查询结果,而不需要多次访问内存来完成一次转换。

TLB其实本质上也是一种cache,既然是一种cache,其目的就是为了提供更高的performance。而与我们知道的指令cache和数据cache又又什么不同呢?

  • 1.指令cache:解决cpu获取main memory中的指令数据的速度比较慢的问题而设立

  • 2.数据cache:解决cpu获取main memory中的数据的速度比较慢的问题而设立

Cache为了更快的访问main memory中的数据和指令,而TLB是为了更快的进行地址翻译而将部分的页表内容缓存到了Translation lookasid buffer中,避免了从main memory访问页表的过程。

2. TLB的转换过程

TLB中的项由两部分组成:

  • 标识区:存放的是虚地址的一部
  • 数据区:存放物理页号、存储保护信息以及其他一些辅助信息

对于数据区的辅助信息包括以下内容:

  • 有效位(Valid):对于操作系统,所有的数据都不会加载进内存,当数据不在内存的时候,就需要到硬盘查找并加载到内存。当为1时,表示在内存上,为0时,该页不在内存,就需要到硬盘查找。
  • 引用位(reference):由于TLB中的项数是一定的,所以当有新的TLB项需要进来但是又满了的话,如果根据LRU算法,就将最近最少使用的项替换成新的项。故需要引用位。同时要注意的是,页表中也有引用位。
  • 脏位(dirty):当内存上的某个块需要被新的块替换时,它需要根据脏位判断这个块之前有没有被修改过,如果被修改过,先把这个块更新到硬盘再替换,否则就直接替换。

下面我们来看一下,当存在TLB的访问流程:

  • 当CPU收到应用程序发来的虚拟地址后,首先去TLB中根据标志Tag寻找页表数据,假如TLB中正好存放所需的页表并且有效位是1,说明TLB命中了,那么直接就可以从TLB中获取该虚拟页号对应的物理页号。
  • 假如有效位是0,说明该页不在内存中,这时候就发生缺页异常,CPU需要先去外存中将该页调入内存并将页表和TLB更新
  • 假如在TLB中没有找到,就通过上一章节的方法,通过分页机制来实现虚拟地址到物理地址的查找。
  • 如果TLB已经满了,那么还要设计替换算法来决定让哪一个TLB entry失效,从而加载新的页表项。

引用位、脏位何时更新?

    1. 如果是TLB命中,那么引用位就会被置1,当TLB或页表满时,就会根据该引用位选择适合的替换位置
    1. 如果TLB命中且这个访存操作是个写操作,那么脏位就会被置1,表明该页被修改过,当该页要从内存中移除时会先执行将该页写会外存的操作,保证数据被正确修改。

3. 如何确定TLB match

我们选择Cortex-A72 processor来描述ARMv8的TLB的组成结构以及维护TLB的指令

A72实现了2个level的TLB,

  • 绿色是L1 TLB,包括L1 instruction TLB(48-entry fully-associative)和L1 data TLB(32-entry fully-associative)。
  • 黄色block是L2 unified TLB,它要大一些,可以容纳1024个entry,是4-way set-associative的。当L1 TLB发生TLB miss的时候,L2 TLB是它们坚强的后盾

通过上图,我们还可以看出:对于多核CPU,每个processor core都有自己的TLB。

假如不做任何的处理,那么在进程A切换到进程B的时候,TLB和Cache中同时存在了A和B进程的数据。

对于kernel space其实无所谓,因为所有的进程都是共享的

对于A和B进程,它们各种有自己的独立的用户地址空间,也就是说,同样的一个虚拟地址X,在A的地址空间中可以被翻译成Pa,而在B地址空间中会被翻译成Pb,如果在地址翻译过程中,TLB中同时存在A和B进程的数据,那么旧的A地址空间的缓存项会影响B进程地址空间的翻译

因此,在进程切换的时候,需要有tlb的操作,以便清除旧进程的影响,具体怎样做呢?

当系统发生进程切换,从进程A切换到进程B,从而导致地址空间也从A切换到B,这时候,我们可以认为在A进程执行过程中,所有TLB和Cache的数据都是for A进程的,一旦切换到B,整个地址空间都不一样了,因此需要全部flush掉

这种方案当然没有问题,当进程B被切入执行的时候,其面对的CPU是一个干干净净,从头开始的硬件环境,TLB和Cache中不会有任何的残留的A进程的数据来影响当前B进程的执行。

当然,稍微有一点遗憾的就是在B进程开始执行的时候,TLB和Cache都是冰冷的(空空如也),因此,B进程刚开始执行的时候,TLB miss和Cache miss都非常严重,从而导致了性能的下降。

我们管这种空TLB叫做cold TLB,它需要随着进程的运行warm up起来才能慢慢发挥起来效果,而在这个时候有可能又会有新的进程被调度了,而造成TLB的颠簸效应。

我们采用进程地址空间这样的术语,其实它可以被进一步细分为内核地址空间和用户地址空间。

对于所有的进程(包括内核线程),内核地址空间是一样的,因此对于这部分地址翻译,无论进程如何切换,内核地址空间转换到物理地址的关系是永远不变的,其实在进程A切换到B的时候,不需要flush掉,因为B进程也可以继续使用这部分的TLB内容(上图中,橘色的block)。

对于用户地址空间,各个进程都有自己独立的地址空间,在进程A切换到B的时候,TLB中的和A进程相关的entry(上图中,青色的block)对于B是完全没有任何意义的,需要flush掉。

​ 在这样的思路指导下,我们其实需要区分global和local(其实就是process-specific的意思)这两种类型的地址翻译,因此,在页表描述符中往往有一个bit来标识该地址翻译是global还是local的,同样的,

在TLB中,这个标识global还是local的flag也会被缓存起来。有了这样的设计之后,我们可以根据不同的场景而flush all或者只是flush local tlb entry。

4. 多核的TLB操作

完成单核场景下的分析之后,我们一起来看看多核的情况。进程切换相关的TLB逻辑block示意图如下

在多核系统中,进程切换的时候,TLB的操作要复杂一些,主要原因有两点:

  • 其一是各个cpu core有各自的TLB,因此TLB的操作可以分成两类,一类是flush all,即将所有cpu core上的tlb flush掉,
  • 还有一类操作是flush local tlb,即仅仅flush本cpu core的tlb。

另外一个原因是进程可以调度到任何一个cpu core上执行(当然具体和cpu affinity的设定相关),从而导致task处处留情(在各个cpu上留有残余的tlb entry)。

我们了解到地址翻译有global(各个进程共享)和local(进程特定的)的概念,因而tlb entry也有global和local的区分。

如果不区分这两个概念,那么进程切换的时候,直接flush该cpu上的所有残余。

这样,当进程A切出的时候,留给下一个进程B一个清爽的tlb,而当进程A在其他cpu上再次调度的时候,它面临的也是一个全空的TLB(其他cpu的tlb不会影响)。

当然,如果区分global 和local,那么tlb操作也基本类似,只不过进程切换的时候,不是flush该cpu上的所有tlb entry,而是flush所有的tlb local entry就OK了

5. PCID

按照这种思路走下去,那就要思考,有没有别的办法能够不刷新TLB呢?

有办法的,那就是PCID。

PCID(进程上下文标识符)是在Westmere架构引入的新特性。简单来说,在此之前,TLB是单纯的VA到PA的转换表,进程1和进程2的VA对应的PA不同,不能放在一起。

加上PCID后,转换变成VA + 进程上下文ID到PA的转换表,放在一起完全没有问题了。

这样进程1和进程2的页表可以和谐的在TLB中共处,进程在它们之前切换完全不需要预热了!

所以新的加载CR3的过程变成了:如果CR4的PCID=1,加载CR3就不需要Flush TLB。

6. TLB shootdown

一切看起来很美好,PCID这个在多年前就有了的技术,现在已经在每个Intel CPU中生根了,那么是不是已经被广泛使用了呢?

而实际的情况是Linux在2017年底才在4.15版中真正全面使用了PCID(尽管在4.14中开始部分引入PCID,见参考资料1),这是为什么呢?

PCID这么好的技术也有副作用。

在它之前的日子里,Linux在多核CPU上调度进程时候,因为每次进程调度都会刷掉进程用户空间的TLB,并没有什么问题。

如果支持PCID的话,TLB操作变得很简单,或者说我们没有必要去执行TLB的操作,因为在TLB的搜索的时候已经区分各个进程,这样TLB不会影响其他任务的执行。

在单核系统中,这样的操作确实能够获得很好的性能,例如场景为A—>B—>A,如果TLB足够大,TLB再两个进程中反复切换,极大的提升了性能。

但是在多核系统重,如果CPU支持PCID,并且在进程切换的时候不flush tlb,那么系统中各个CPU中的TLB entry则保留各个进程的TLB entry,当在某个CPU上,一个进程被销毁了,或者该进程修改了自己的页表的时候,就必须将该进程的TLB从系统中请出去。

这时候,不仅仅需要flush本CPU上对应的TLB entry,还需要flush其他CPU上和该进程相关的残余。

而这个动作就需要通过IPI实现,从而引起了系统开销,此外PCID的分配和管理也会带来额外的开销。

再加上PCID里面的上下文ID长度有限,只能够放得下4096个进程ID,这就需要一定的管理以便申请和放弃。

如此种种,导致Linux系统在应用PCID上并不积极,直到不得不这样做。

7. 结论

TLB的引入解决了分页机制的性能问题,但是如何提高TLB的性能问题,但是如何提高TLB的命中确成为一个新的技术难题,对于X86提供了PCID的方式,而ARM采用的ASID技术,但是对于现在日益复杂的应用场景,这些都未能彻底的解决这些问题。

参考资料

  • https://zhuanlan.zhihu.com/p/492184589?utm_id=0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/754144.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年度VSCode主题推荐(个人常用主题存档)

前言 早在2018年的时候发了一篇关于VSCode主题风格推荐——VS Code 主题风格设置,时过境迁,如今常用的主题皮肤早已更替。 今天下午在整理VSCode插件的时候,不小心把常用的那款(亮色)主题插件给删除了,无…

202444读书笔记|《作家榜名著:菜根谭》——大聪明的人,小事必朦胧,大懵懂的人,小事必伺察

202444读书笔记|《作家榜名著:菜根谭》——大聪明的人,小事必朦胧,大懵懂的人,小事必伺察 修省篇(三八则)应酬篇(五一则)评议篇(四八则)闲适篇(四…

添可、希亦、追觅洗地机好不好用?实物终极PK测评分享!

随着人们对家庭生活品质的追求不断地提高,对智能清洁家电的需求也不断地上涨。作为在智能清洁家电领域的资深研究员,结合我八年的使用经验以及专业的眼光,今天就给大家一起来聊聊希亦、追觅、添可洗地机好不好用,以及三款洗地机产…

科技成果鉴定测试如何进行?第三方检测机构进行鉴定测试的好处

科技成果鉴定测试,作为科技领域中一项重要的质量检验手段,具有广泛的应用范围。旨在为科技成果的研发者和使用者提供客观、科学、权威的鉴定结果,从而评估科技成果的技术水平和市场竞争力。   科技成果鉴定测试是对科技成果进行系统、全面的…

Java项目:62 基于ssm的校园驿站管理系统+jsp

作者主页:源码空间codegym 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 管理员管理快递仓库信息,管理待发货信息,管理已收快递,管理物流以及留言信息,管理员工和用户资…

2.7 ROC曲线相比P-R曲线有什么特点?

2.7 ROC曲线相比P-R曲线有什么特点? 前情提要: P-R曲线详见:2.2 什么是精确率(Precision)与召回率(Recall)?二者如何权衡?) 2.4 ROC曲线是什么? 2…

小鹏MONA将至:10 - 15万级,用性价比打新势力,用智驾打比亚迪

‍ 作者 |老缅 编辑 |德新 小鹏的全新品牌即将发布,10-15万级也能有高等级智能驾驶。 3月16日在中国电动汽车百人会论坛2024上,小鹏汽车董事长、CEO何小鹏提出:“下一个十年将是智能化的十年。未来18个月内高阶智驾的拐点将到来”。 所谓…

Excel之数据透视表

数据透视:逻辑理解与制作步骤 一、创建数据透视表 1、创建数据透视表:每列必须有表头 (1)选择要创建数据透视表的数据------插入----选择数据透视表 (2)选择现有工作表然后点击目标表选择合适的位置插入…

test测试类-变量学习

test测试类 作用:标记到类上成为测试类,标记到方法上成为测试方法 变量:测试类的变量,在测试类括号中应用 1、invocationCount变量 意思是这个方法应该被调用的次数。 在测试框架中,特别是当使用参数化测试或数据驱动…

力扣思路题:最长特殊序列1

int findLUSlength(char * a, char * b){int alenstrlen(a),blenstrlen(b);if (strcmp(a,b)0)return -1;return alen>blen?alen:blen; }

本地知识库的底层逻辑是什么?为什么企业需要它?

如果我们将企业比作一座繁华的城市,那么信息就像是城市的建筑,知识库则是城市的地图。知识库不仅可以帮我们存储整理和搜寻信息,而且还可以为我们提供信息的结构以便我们能够更好地理解和利用这些信息。今天,我们要探讨的就是这个…

Centos7 安装postgresql14后无法连接数据库

1、数据库服务器允许外部访问5432端口。 2、postgresql.conf 3、pg_hba.conf a、制定某个IP(192.168.0.107)访问 b、指定ip段访问 允许10.1.1.0~10.1.1.255网段登录数据库 host all all 10.1.1.0/24 trust c、指定全网访问 host a…

【Godot4.2】任意多边形或折线围绕任意点旋转

概述 在很多绘图软件中,都会有对于任意图形围绕给定的旋转中心旋转的基本操作。本节就基于Godot实现任意多边形(Polygon)或折线(Polyline)绕任意旋转中心(在图形内或外都可以)进行旋转。 基本…

【Unity】CatlikeCoding SRP

Unity 自定义渲染管线 提示:基于CatlikeCoding SRP系列教程学习 学习链接:SRP 个人测试: Demo 相关记录以后有时间再更:

Acwing-基础算法课笔记之动态规划(线性DP)

Acwing-基础算法课笔记之动态规划(线性DP) 一、数字三角形1、概述2、闫氏dp分析法代码示例 二、最长上升子序列1、概述2、闫氏dp分析法3、过程模拟4、代码演示 三、最长上升子序列强化版1、概述2、代码示例 四、最长公共子序列(LCS&#xff0…

你开发的系统国际化了吗?

亲爱的朋友们,周一好,新的一周,精神满满。 在开发Spring Boot应用时,接口的参数校验是一个重要的环节,它确保了数据的完整性和准确性。而国际化处理则使得应用能够支持多种语言,提升了用户体验。 一、参数…

ev多域名ssl证书2000元一年送一月

多域名SSL证书是一种特殊的数字证书产品。多域名SSL证书可以同时保护多个独立的域名站点,这些域名站点可以是多个主域名、子域名,多域名SSL证书可以为它们提供传输数据加密服务以及身份认证服务。EV多域名SSL证书具有更高的安全性,所以一些金…

深入了解主播美颜技术:从美颜SDK到实时美颜算法

在当今数字化时代,直播行业蓬勃发展,成为了人们日常生活中不可或缺的一部分。而在直播中,主播的形象对于吸引观众、提升观看体验至关重要。为了呈现更加美好的形象,主播们常常会借助美颜技术。从最初的美颜SDK到如今的实时美颜算法…

PS学习-对象选择抠图,覆盖

之前使用通道抠图抠大树 对象 选择 ctrlj 水平居中 选区羽化 选择加选按住shift,减选按住alt 单个选择按住shift是变正方形,或者椭圆变成圆 覆盖 想把天空都变成白色 选区羽化ctrlj 复制粘贴几个往上放 复制了十来个,遮住就行 首先存储为PS…

二叉搜索树题目:将有序链表转换为二叉搜索树

文章目录 题目标题和出处难度题目描述要求示例数据范围 前言解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题:将有序链表转换为二叉搜索树 出处:109. 将有序链表转换为二叉搜索树 难度 5 级 题目描述 要求 …