本章内容主要是在开发板上运行AES128防盗算法,并且通过串口调试助手观测防盗算法加密后的值以及解密后的值,判断防盗算法是否在开发板上正确运行。
1,防盗算法
以下为AES128防盗算法源码:
aes.h文件源码
#ifndef _AES_H_
#define _AES_H_#include <stdint.h>// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES128 encryption in CBC-mode of operation and handles 0-padding.
// ECB enables the basic ECB 16-byte block algorithm. Both can be enabled simultaneously.// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC#define CBC 1
#endif#ifndef ECB#define ECB 1
#endif#if defined(ECB) && ECBvoid AES128_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t *output);
void AES128_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output);#endif // #if defined(ECB) && ECB#if defined(CBC) && CBCvoid AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);#endif // #if defined(CBC) && CBC#endif //_AES_H_
aes.c文件源码
/*This is an implementation of the AES128 algorithm, specifically ECB and CBC mode.The implementation is verified against the test vectors in:National Institute of Standards and Technology Special Publication 800-38A 2001 EDECB-AES128
----------plain-text:6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710key:2b7e151628aed2a6abf7158809cf4f3cresulting cipher3ad77bb40d7a3660a89ecaf32466ef97 f5d3d58503b9699de785895a96fdbaaf 43b1cd7f598ece23881b00e3ed030688 7b0c785e27e8ad3f8223207104725dd4 NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)You should pad the end of the string with zeros if this is not the case.*//*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include <stdint.h>
#include <string.h> // CBC mode, for memset
#include "aes.h"/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
// The number of 32 bit words in a key.
#define Nk 4
// Key length in bytes [128 bit]
#define KEYLEN 16
// The number of rounds in AES Cipher.
#define Nr 10// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION#define MULTIPLY_AS_A_FUNCTION 0
#endif/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
static state_t* state;// The array that stores the round keys.
static uint8_t RoundKey[176];// The Key input to the AES Program
static const uint8_t* Key;#if defined(CBC) && CBC// Initial Vector used only for CBC modestatic uint8_t* Iv;
#endif// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {//0 1 2 3 4 5 6 7 8 9 A B C D E F0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };static const uint8_t rsbox[256] =
{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };// The round constant word array, Rcon[i], contains the values given by
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
// Note that i starts at 1, not 0).
static const uint8_t Rcon[255] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
static uint8_t getSBoxValue(uint8_t num)
{return sbox[num];
}static uint8_t getSBoxInvert(uint8_t num)
{return rsbox[num];
}// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(void)
{uint32_t i, j, k;uint8_t tempa[4]; // Used for the column/row operations// The first round key is the key itself.for(i = 0; i < Nk; ++i){RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];}// All other round keys are found from the previous round keys.for(; (i < (Nb * (Nr + 1))); ++i){for(j = 0; j < 4; ++j){tempa[j]=RoundKey[(i-1) * 4 + j];}if (i % Nk == 0){// This function rotates the 4 bytes in a word to the left once.// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]// Function RotWord(){k = tempa[0];tempa[0] = tempa[1];tempa[1] = tempa[2];tempa[2] = tempa[3];tempa[3] = k;}// SubWord() is a function that takes a four-byte input word and // applies the S-box to each of the four bytes to produce an output word.// Function Subword(){tempa[0] = getSBoxValue(tempa[0]);tempa[1] = getSBoxValue(tempa[1]);tempa[2] = getSBoxValue(tempa[2]);tempa[3] = getSBoxValue(tempa[3]);}tempa[0] = tempa[0] ^ Rcon[i/Nk];}else if (Nk > 6 && i % Nk == 4){// Function Subword(){tempa[0] = getSBoxValue(tempa[0]);tempa[1] = getSBoxValue(tempa[1]);tempa[2] = getSBoxValue(tempa[2]);tempa[3] = getSBoxValue(tempa[3]);}}RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];}
}// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round)
{uint8_t i,j;for(i=0;i<4;++i){for(j = 0; j < 4; ++j){(*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];}}
}// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(void)
{uint8_t i, j;for(i = 0; i < 4; ++i){for(j = 0; j < 4; ++j){(*state)[j][i] = getSBoxValue((*state)[j][i]);}}
}// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(void)
{uint8_t temp;// Rotate first row 1 columns to left temp = (*state)[0][1];(*state)[0][1] = (*state)[1][1];(*state)[1][1] = (*state)[2][1];(*state)[2][1] = (*state)[3][1];(*state)[3][1] = temp;// Rotate second row 2 columns to left temp = (*state)[0][2];(*state)[0][2] = (*state)[2][2];(*state)[2][2] = temp;temp = (*state)[1][2];(*state)[1][2] = (*state)[3][2];(*state)[3][2] = temp;// Rotate third row 3 columns to lefttemp = (*state)[0][3];(*state)[0][3] = (*state)[3][3];(*state)[3][3] = (*state)[2][3];(*state)[2][3] = (*state)[1][3];(*state)[1][3] = temp;
}static uint8_t xtime(uint8_t x)
{return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}// MixColumns function mixes the columns of the state matrix
static void MixColumns(void)
{uint8_t i;uint8_t Tmp,Tm,t;for(i = 0; i < 4; ++i){ t = (*state)[i][0];Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;}
}// Multiply is used to multiply numbers in the field GF(2^8)
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{return (((y & 1) * x) ^((y>>1 & 1) * xtime(x)) ^((y>>2 & 1) * xtime(xtime(x))) ^((y>>3 & 1) * xtime(xtime(xtime(x)))) ^((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));}
#else
#define Multiply(x, y) \( ((y & 1) * x) ^ \((y>>1 & 1) * xtime(x)) ^ \((y>>2 & 1) * xtime(xtime(x))) ^ \((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \#endif// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(void)
{int i;uint8_t a,b,c,d;for(i=0;i<4;++i){ a = (*state)[i][0];b = (*state)[i][1];c = (*state)[i][2];d = (*state)[i][3];(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);}
}// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(void)
{uint8_t i,j;for(i=0;i<4;++i){for(j=0;j<4;++j){(*state)[j][i] = getSBoxInvert((*state)[j][i]);}}
}static void InvShiftRows(void)
{uint8_t temp;// Rotate first row 1 columns to right temp=(*state)[3][1];(*state)[3][1]=(*state)[2][1];(*state)[2][1]=(*state)[1][1];(*state)[1][1]=(*state)[0][1];(*state)[0][1]=temp;// Rotate second row 2 columns to right temp=(*state)[0][2];(*state)[0][2]=(*state)[2][2];(*state)[2][2]=temp;temp=(*state)[1][2];(*state)[1][2]=(*state)[3][2];(*state)[3][2]=temp;// Rotate third row 3 columns to righttemp=(*state)[0][3];(*state)[0][3]=(*state)[1][3];(*state)[1][3]=(*state)[2][3];(*state)[2][3]=(*state)[3][3];(*state)[3][3]=temp;
}// Cipher is the main function that encrypts the PlainText.
static void Cipher(void)
{uint8_t round = 0;// Add the First round key to the state before starting the rounds.AddRoundKey(0); // There will be Nr rounds.// The first Nr-1 rounds are identical.// These Nr-1 rounds are executed in the loop below.for(round = 1; round < Nr; ++round){SubBytes();ShiftRows();MixColumns();AddRoundKey(round);}// The last round is given below.// The MixColumns function is not here in the last round.SubBytes();ShiftRows();AddRoundKey(Nr);
}static void InvCipher(void)
{uint8_t round=0;// Add the First round key to the state before starting the rounds.AddRoundKey(Nr); // There will be Nr rounds.// The first Nr-1 rounds are identical.// These Nr-1 rounds are executed in the loop below.for(round=Nr-1;round>0;round--){InvShiftRows();InvSubBytes();AddRoundKey(round);InvMixColumns();}// The last round is given below.// The MixColumns function is not here in the last round.InvShiftRows();InvSubBytes();AddRoundKey(0);
}static void BlockCopy(uint8_t* output, const uint8_t* input)
{uint8_t i;for (i=0;i<KEYLEN;++i){output[i] = input[i];}
}/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
#if defined(ECB) && ECBvoid AES128_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t* output)
{// Copy input to output, and work in-memory on outputBlockCopy(output, input);state = (state_t*)output;Key = key;KeyExpansion();// The next function call encrypts the PlainText with the Key using AES algorithm.Cipher();
}void AES128_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output)
{// Copy input to output, and work in-memory on outputBlockCopy(output, input);state = (state_t*)output;// The KeyExpansion routine must be called before encryption.Key = key;KeyExpansion();InvCipher();
}#endif // #if defined(ECB) && ECB#if defined(CBC) && CBCstatic void XorWithIv(uint8_t* buf)
{uint8_t i;for(i = 0; i < KEYLEN; ++i){buf[i] ^= Iv[i];}
}void AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
{uintptr_t i;uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */BlockCopy(output, input);state = (state_t*)output;// Skip the key expansion if key is passed as 0if(0 != key){Key = key;KeyExpansion();}if(iv != 0){Iv = (uint8_t*)iv;}for(i = 0; i < length; i += KEYLEN){XorWithIv(input);BlockCopy(output, input);state = (state_t*)output;Cipher();Iv = output;input += KEYLEN;output += KEYLEN;}if(remainders){BlockCopy(output, input);memset(output + remainders, 0, KEYLEN - remainders); /* add 0-padding */state = (state_t*)output;Cipher();}
}void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
{uintptr_t i;uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */BlockCopy(output, input);state = (state_t*)output;// Skip the key expansion if key is passed as 0if(0 != key){Key = key;KeyExpansion();}// If iv is passed as 0, we continue to encrypt without re-setting the Ivif(iv != 0){Iv = (uint8_t*)iv;}for(i = 0; i < length; i += KEYLEN){BlockCopy(output, input);state = (state_t*)output;InvCipher();XorWithIv(output);Iv = input;input += KEYLEN;output += KEYLEN;}if(remainders){BlockCopy(output, input);memset(output+remainders, 0, KEYLEN - remainders); /* add 0-padding */state = (state_t*)output;InvCipher();}
}#endif // #if defined(CBC) && CBC
2,串口相关代码
usart.h源码
#ifndef __USART_H__
#define __USART_H__#include "stm32f10x.h"void sendchar (int ch);void myprintf(char *buf);void uart_send_byte(unsigned char d);void USART1_InitConfig(uint32_t BaudRate);#endif
usart.c源码
//#include "..\APP\includes.h"
//#include "include.h"
/**************************************************************************************
* 变量原型:
* 变量说明:
**************************************************************************************/
/**************************************************************************************
* 函数原型:
* 函数功能:
* 输入参数:
* 输出参数:
* 函数说明:
**************************************************************************************/#include "usart.h"
#include <stdio.h>#ifdef __GNUC__ /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf set to 'Yes') calls __io_putchar() */ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */ /*******************************************************************************
* Function Name : PUTCHAR_PROTOTYPE
* Description : Retargets the C library printf function to the USART.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
PUTCHAR_PROTOTYPE
{while (!(USART1->SR & USART_FLAG_TXE));USART1->DR = (ch & 0x1FF);return ch;
}void uart_send_byte(unsigned char d)
{/* 发送一个字节数据到USART1 */USART_SendData(USART1, (uint8_t)d);/* 等待发送完毕 */while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}void USART1_InitConfig(uint32_t BaudRate)
{USART_InitTypeDef USART_InitStructure;USART_InitStructure.USART_BaudRate = BaudRate;USART_InitStructure.USART_WordLength = USART_WordLength_8b;USART_InitStructure.USART_StopBits = USART_StopBits_1;USART_InitStructure.USART_Parity = USART_Parity_No;USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;/* Configure USART1 */USART_Init(USART1, &USART_InitStructure);/* Enable USART1 Receive and Transmit interrupts *//* Enable the USART1 */USART_Cmd(USART1, ENABLE);//仿真看到执行这里,TC标志居然被设置为1了,不知道实际在flash中运行是否是这样
}
3,BSP相关文件
板级支持包
bsp.h源码
#if !defined( _BSP_H )
#define _BSP_H#include "stm32f10x.h"
#include "cpu.h"
#include "os_cpu.h"#include "usart.h"void RCC_Configuration(void);void GPIO_Configuration(void);void NVIC_Configuration(void);CPU_INT32U BSP_CPU_ClkFreq (void);INT32U OS_CPU_SysTickClkFreq (void);void BSP_Init(void);#ifdef DEBUG
void assert_failed(u8* file, u32 line)
#endif/*
*********************************************************************************************************
* INT DEFINES
*********************************************************************************************************
*/#define BSP_INT_ID_WWDG 0 /* Window WatchDog Interrupt */
#define BSP_INT_ID_PVD 1 /* PVD through EXTI Line detection Interrupt */
#define BSP_INT_ID_TAMPER 2 /* Tamper Interrupt */
#define BSP_INT_ID_RTC 3 /* RTC global Interrupt */
#define BSP_INT_ID_FLASH 4 /* FLASH global Interrupt */
#define BSP_INT_ID_RCC 5 /* RCC global Interrupt */
#define BSP_INT_ID_EXTI0 6 /* EXTI Line0 Interrupt */
#define BSP_INT_ID_EXTI1 7 /* EXTI Line1 Interrupt */
#define BSP_INT_ID_EXTI2 8 /* EXTI Line2 Interrupt */
#define BSP_INT_ID_EXTI3 9 /* EXTI Line3 Interrupt */
#define BSP_INT_ID_EXTI4 10 /* EXTI Line4 Interrupt */
#define BSP_INT_ID_DMA1_CH1 11 /* DMA1 Channel 1 global Interrupt */
#define BSP_INT_ID_DMA1_CH2 12 /* DMA1 Channel 2 global Interrupt */
#define BSP_INT_ID_DMA1_CH3 13 /* DMA1 Channel 3 global Interrupt */
#define BSP_INT_ID_DMA1_CH4 14 /* DMA1 Channel 4 global Interrupt */
#define BSP_INT_ID_DMA1_CH5 15 /* DMA1 Channel 5 global Interrupt */
#define BSP_INT_ID_DMA1_CH6 16 /* DMA1 Channel 6 global Interrupt */
#define BSP_INT_ID_DMA1_CH7 17 /* DMA1 Channel 7 global Interrupt */
#define BSP_INT_ID_ADC1_2 18 /* ADC1 et ADC2 global Interrupt */
#define BSP_INT_ID_USB_HP_CAN_TX 19 /* USB High Priority or CAN TX Interrupts */
#define BSP_INT_ID_USB_LP_CAN_RX0 20 /* USB Low Priority or CAN RX0 Interrupts */
#define BSP_INT_ID_CAN_RX1 21 /* CAN RX1 Interrupt */
#define BSP_INT_ID_CAN_SCE 22 /* CAN SCE Interrupt */
#define BSP_INT_ID_EXTI9_5 23 /* External Line[9:5] Interrupts */
#define BSP_INT_ID_TIM1_BRK 24 /* TIM1 Break Interrupt */
#define BSP_INT_ID_TIM1_UP 25 /* TIM1 Update Interrupt */
#define BSP_INT_ID_TIM1_TRG_COM 26 /* TIM1 Trigger and Commutation Interrupt */
#define BSP_INT_ID_TIM1_CC 27 /* TIM1 Capture Compare Interrupt */
#define BSP_INT_ID_TIM2 28 /* TIM2 global Interrupt */
#define BSP_INT_ID_TIM3 29 /* TIM3 global Interrupt */
#define BSP_INT_ID_TIM4 30 /* TIM4 global Interrupt */
#define BSP_INT_ID_I2C1_EV 31 /* I2C1 Event Interrupt */
#define BSP_INT_ID_I2C1_ER 32 /* I2C1 Error Interrupt */
#define BSP_INT_ID_I2C2_EV 33 /* I2C2 Event Interrupt */
#define BSP_INT_ID_I2C2_ER 34 /* I2C2 Error Interrupt */
#define BSP_INT_ID_SPI1 35 /* SPI1 global Interrupt */
#define BSP_INT_ID_SPI2 36 /* SPI2 global Interrupt */
#define BSP_INT_ID_USART1 37 /* USART1 global Interrupt */
#define BSP_INT_ID_USART2 38 /* USART2 global Interrupt */
#define BSP_INT_ID_USART3 39 /* USART3 global Interrupt */
#define BSP_INT_ID_EXTI15_10 40 /* External Line[15:10] Interrupts */
#define BSP_INT_ID_RTCAlarm 41 /* RTC Alarm through EXTI Line Interrupt */
#define BSP_INT_ID_USBWakeUp 42 /* USB WakeUp from suspend through EXTI Line Interrupt */
#define BSP_INT_ID_TIM8_BRK 43 /* TIM8 Break Interrupt */
#define BSP_INT_ID_TIM8_UP 44 /* TIM8 Update Interrupt */
#define BSP_INT_ID_TIM8_TRG_COM 45 /* TIM8 Trigger and Commutation Interrupt */
#define BSP_INT_ID_TIM8_CC 46 /* TIM8 Capture Compare Interrupt */
#define BSP_INT_ID_ADC3 47 /* ADC3 global Interrupt */
#define BSP_INT_ID_FSMC 48 /* FSMC global Interrupt */
#define BSP_INT_ID_SDIO 49 /* SDIO global Interrupt */
#define BSP_INT_ID_TIM5 50 /* TIM5 global Interrupt */
#define BSP_INT_ID_SPI3 51 /* SPI3 global Interrupt */
#define BSP_INT_ID_UART4 52 /* UART4 global Interrupt */
#define BSP_INT_ID_UART5 53 /* UART5 global Interrupt */
#define BSP_INT_ID_TIM6 54 /* TIM6 global Interrupt */
#define BSP_INT_ID_TIM7 55 /* TIM7 global Interrupt */
#define BSP_INT_ID_DMA2_CH1 56 /* DMA2 Channel 1 global Interrupt */
#define BSP_INT_ID_DMA2_CH2 57 /* DMA2 Channel 2 global Interrupt */
#define BSP_INT_ID_DMA2_CH3 58 /* DMA2 Channel 3 global Interrupt */
#define BSP_INT_ID_DMA2_CH4_5 59 /* DMA2 Channel 4 and DMA2 Channel 5 global Interrupt */#endif
bsp.c源码
//#include "..\App\includes.h"
#include "bsp.h"/*
*********************************************************************************************************
QQ: 958664258
21IC用户名:banhushui
交流平台:http://blog.21ic.com/user1/5817/index.html
淘宝店铺:http://shop58559908.taobao.com
旺旺:半壶水电子
编译器版本:MDK3.5
硬件平台:BHS-STM32--->
http://item.taobao.com/auction/item_detail-db2-a29ff4d34829cbddeffe864fc1741d21.jhtml
*********************************************************************************************************
*//*******************************************************************************
* Function Name : RCC_Configuration
* Description : Configures the different system clocks.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO | RCC_APB2Periph_USART1, ENABLE);
}/*******************************************************************************
* Function Name : GPIO_Configuration
* Description : Configures the different GPIO ports.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void GPIO_Configuration(void)
{GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_Init(GPIOB, &GPIO_InitStructure);GPIO_WriteBit(GPIOB, GPIO_Pin_8, (BitAction)1);//usart_init----------------------------------------------------/* Configure USART1 Rx (PA.10) as input floating */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;GPIO_Init(GPIOA, &GPIO_InitStructure);/* Configure USART1 Tx (PA.09) as alternate function push-pull */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_Init(GPIOA, &GPIO_InitStructure);
}/*******************************************************************************
* Function Name : NVIC_Configuration
* Description : Configures Vector Table base location.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_Configuration(void)
{
#if defined (VECT_TAB_RAM)/* Set the Vector Table base location at 0x20000000 */ NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#elif defined(VECT_TAB_FLASH_IAP)NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x2000);
#else /* VECT_TAB_FLASH *//* Set the Vector Table base location at 0x08000000 */ NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif /* Configure the NVIC Preemption Priority Bits */ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);}void BSP_Init(void)
{/* System Clocks Configuration */RCC_Configuration(); GPIO_Configuration();/* NVIC configuration */NVIC_Configuration();USART1_InitConfig(9600);
}CPU_INT32U BSP_CPU_ClkFreq (void)
{RCC_ClocksTypeDef rcc_clocks;RCC_GetClocksFreq(&rcc_clocks);return ((CPU_INT32U)rcc_clocks.HCLK_Frequency);
}INT32U OS_CPU_SysTickClkFreq (void)
{INT32U freq;freq = BSP_CPU_ClkFreq();return (freq);
}#ifdef DEBUG
/*******************************************************************************
* Function Name : assert_failed
* Description : Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* Input : - file: pointer to the source file name
* - line: assert_param error line source number
* Output : None
* Return : None
*******************************************************************************/
void assert_failed(u8* file, u32 line)
{ /* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* Infinite loop */while (1){}
}
#endif/******************* (C) COPYRIGHT 2008 STMicroelectronics *****END OF FILE****/
4,main文件
#include <stdio.h>
#include <stdlib.h>
#include "stm32f10x.h"#include "aes.h"
#include "bsp.h"int main()
{uint8_t i = 0; BSP_Init();uint8_t input[16] = {2};for(i=0;i<16;i++){input[i] = rand()%10;}for(i=0;i<16;i++){printf("input[%d] = %d\r\n",i,input[i]);}printf("\r\n");uint8_t output[16] = {5};uint8_t length = 7;const uint8_t key[16] = {2};const uint8_t iv[16] = {3};// for(i=0;i<16;i++)
// {
// printf("output[%d] = %d\r\n",i,output[i]);
// }
//
// printf("\r\n");AES128_CBC_encrypt_buffer(output, input, length, key, iv);for(i=0;i<16;i++){printf("output[%d] = %d\r\n",i,output[i]);}printf("\r\n"); uint8_t decrypt[16] = {0};AES128_CBC_decrypt_buffer(decrypt, output, length, key, iv);for(i=0;i<16;i++){printf("decrypt[%d] = %d\r\n",i,decrypt[i]);}while(1)return 0;
}