【数据可视化】使用Python + Gephi,构建中医方剂关系网络图!

代码和示例数据下载

前言

在这篇文章中,我们将会可视化 《七版方剂学》 的药材的关系,我们将使用Python制作节点和边的数据,然后在Gephi中绘制出方剂的网络图。

Gephi是一个专门用于构建网络图的工具,只要你能提供节点和边的数据,你就可以绘制一个漂亮的网络图。

本文用Python实现了一个可复用的函数,用于输出节点和边的数据。

结果预览

每个药材对应一个节点。

将各个药材的关系展现出来,我们可以很直观的看到那些药材可能会被用在一起。

边越粗,代表被用在一起的频次越高。

在这里插入图片描述

利用Python制作“节点”和“边”的数据

在我们的用处方和药物信息_构建节点和边.py这个代码文件中,实现了一个函数叫generate_graph,本文将使用这个函数可视化 《七版方剂学》 的方剂。

有了这个函数,读者也可以很方便地针对特定的疾病的方剂数据进行可视化。

你只需要传入两个参数:

  1. 处方数据路径
  2. 药名药味药性数据路径

即可输出用于构建网络图的节点的文件。

下面是调用本人实现的函数的演示程序的代码,请在上文下载本文的附带的数据和代码来运行。
在这里插入图片描述
运行完毕,我们将会得到如下两个文件:

  • 示例处方数据_edge.csv
  • 示例处方数据_node.csv

分别代表边和节点。
在这里插入图片描述

利用Gephi构建网络图

步骤1. 打开Gephi


你会看到如下图

在这里插入图片描述

步骤2. 打开 “边” 文件

点击“打开图文件”,选择红色方框中的edge.csv为后缀的数据。

在这里插入图片描述



打开“边”文件后,你会看到乱码,不必惊慌。
在这里插入图片描述



点开字符集,寻找GBK,在博主的版本中,GBK位于UTF-8的上方。(国内常用两种编码:UTF-8和GBK)
在这里插入图片描述



设置完成!,字符串都正常显示了,可直接点击“下一步”,还有“完成”。在这里插入图片描述



选择红色方框中的,添加到现在的工作区
在这里插入图片描述

然后,我们的“边”数据就导入完成了。

步骤3. 打开“节点”文件

接下来,让我们导入节点文件。
在这里插入图片描述



点开后缀为node.csv的文件
在这里插入图片描述



像刚才打开边的文件一样,我们要选择GBK编码,然后仍然是直接点“下一步”,还有“完成”,“添加到工作区”。

在这里插入图片描述



步骤4. 得到原始网络图

经过导入数据,我们得到了原始的网络图(如下所示)。
在这里插入图片描述



步骤5. 指定节点颜色

且看左上角,让我们来按照药性,在本文的节点数据中为yaoxing这一列,指定节点的颜色。
在这里插入图片描述



点击应用当前设置的颜色后,我们可以看到下图中网络图发生的变化。
在这里插入图片描述



步骤6. 指定布局

我们这个演示中,使用Force Atlas

在这里插入图片描述
在这里插入图片描述



运行布局后,网络图变成了动态的版本。
在这里插入图片描述

步骤7. 显示节点标签(药名)

在这里插入图片描述



因为默认的字体不支持中文,所以,我们会看到如下场面。
在这里插入图片描述



跟随红色方框,点击Arial Bold,再设置图中的字体。
在这里插入图片描述



成功显示各个节点对应的药名
但是没有颜色。
在这里插入图片描述



跟随红色方框,设置标签的颜色
在这里插入图片描述



设置成功
现在我们的标签有了颜色。但是你觉得太紧凑了?请看下文。

在这里插入图片描述

为了避免标签颜色和边的颜色重叠,你可以取消掉下图的红色方框中的内容。

在这里插入图片描述

步骤8. 设置斥力强度(增加节点间的间隔)

看图中左侧,本文直接将斥力强度设置到了10000。可以发现网络图不再紧凑到一团。

在这里插入图片描述

大功告成!

现在我们有了一个漂亮的,动态的网络图。我们可以很直观的看到方剂之间的关系,以及它们的药性。

在这里插入图片描述

使用网络图

我们可以使用ctrl + f,快速搜索对应的药材名称,下面以麻黄为例。
在这里插入图片描述

让我们把鼠标挪到麻黄上面,我们就能发现处方中和麻黄相关的药物。(小技巧:ctrl + 鼠标滚轮,可以调整鼠标指针的判定点大小)

我们的处方数据中包含麻黄汤,自然,我们可以在下图中看到麻黄 桂枝 杏仁 炙甘草

边越粗,代表一同出现的频次越高。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/749916.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Stable Diffusion科普文章【附升级gpt4.0秘笈】

随着人工智能技术的飞速发展,我们越来越多地看到计算机生成的艺术作品出现在我们的生活中。其中,Stable Diffusion作为一种创新的图像生成技术,正在引领一场艺术创作的革命。本文将为您科普Stable Diffusion的相关知识,带您走进这…

Flink 集群部署模式

文章目录 前言一、会话模式(Session Mode)二、单作业模式(Per-Job Mode)三、应用模式(Application Mode) 前言 Flink支持多种集群部署模式,以满足不同场景和需求。以下是Flink的主要集群部署模…

springboot多模块下swaggar界面出现异常(Knife4j文档请求异常)或者界面不报错但是没有显示任何信息

继上一篇博文,我们解决了多模块下扫描不到子模块的原因,建议先看上一个博客了解项目结构: springboot 多模块启动报错Field XXX required a bean of type XXX that could not be found. 接下来我们来解决swaggar异常的原因,我们成功启动项目…

QML 布局管理器之ColumnLayout

一.ColumnLayout讲解 QML中的ColumnLayout是一种布局元素,用于在垂直列中排列其子元素。它的主要使用下列附加属性: Layout.minimumWidth Layout.minimumHeight Layout.preferredWidth Layout.preferredHeight Layout.maximumWidth Layout.maximumHeight Layout.fil…

SqlServer2008(R2)(一)SqlServer2008(R2)经典宝藏操作收集整理

一、常见操作 1、TRUNCATE TABLE 语句 删除表数据 TRUNCATE TABLE语句比DELET删除表中的所有行更快。从逻辑上讲,TRUNCATE TABLE它类似于DELETE没有WHERE子句的语句。 TRUNCATE TABLE语句从表中删除所有行,但表结构及其列,约束,…

Ubuntu 20.04 系统如何优雅地安装NCL?

一、什么是NCL? NCAR Command Language(NCL)是由美国大气研究中心(NCAR)推出的一款用于科学数据计算和可视化的免费软件。 它有着非常强大的文件输入和输出功能,可读写netCDF-3、netCDF-4 classic、HDF4、b…

Xinstall助力web唤起iOS,打破平台壁垒,实现无缝跳转

在移动互联网时代,web与App之间的跳转已成为用户日常使用中不可或缺的一部分。然而,对于iOS系统的用户来说,web唤起App的过程往往充满了挑战和不便。这时,Xinstall作为一款专业的移动开发者服务工具,为开发者们提供了解…

Lua中文语言编程源码-第一节,更改llex.c词法分析器模块, 使Lua支持中文关键词。

源码已经更新在CSDN的码库里: git clone https://gitcode.com/funsion/CLua.git 在src文件夹下的llex.c,是Lua的词法分析器模块。 增加中文保留字标识符列表,保留英文保留字标识符列表。 搜索“ORDER RESERVED”,将原始代码 …

ARM和AMD介绍

一、介绍 ARM 和 AMD 都是计算机领域中的知名公司,它们在不同方面具有重要的影响和地位。 ARM(Advanced RISC Machine):ARM 公司是一家总部位于英国的公司,专注于设计低功耗、高性能的处理器架构。ARM 架构以其精简指…

如何在“Microsoft Visual Studio”中使用OpenCV编译应用程序

返回目录:OpenCV系列文章目录(持续更新中......) 前一篇:OpenCV4.9.0在windows系统下的安装 后一篇: 警告: 本教程可以包含过时的信息。 我在这里描述的所有内容都将适用于 OpenCV 的C\C接口。我首先假…

图像处理ASIC设计方法 笔记10 插值算法的流水线架构

(一) 三次插值算法实现的图像旋转设计的流水线架构 传统上,三次插值算法实现的图像旋转设计需要三块一样的处理资源,为了节约资源,采用流水线设计,简单来讲就是三次插值算法共用一块资源,优化这…

数据结构的概念大合集02(线性表)

概念大合集02 1、线性表及其逻辑结构1.1 线性表的定义1.2 线性表的基本操作 2、线性表的顺序存储结构2.1 顺序表 3、线性表的链式存储3.1 链表3.1.1 头结点(头指针),首指针,尾指针,尾结点3.1.2 单链表3.1.3 双链表3.1.…

软件供应链投毒 — NPM 恶意组件分析(二)

聚焦源代码安全,网罗国内外最新资讯! 专栏供应链安全 数字化时代,软件无处不在。软件如同社会中的“虚拟人”,已经成为支撑社会正常运转的最基本元素之一,软件的安全性问题也正在成为当今社会的根本性、基础性问题。 随…

瑞熙贝通实验室安全培训考试系统

一、系统概述 瑞熙贝通实验室安全培训考试系统是一种基于互联网和人工智能技术的在线考试平台,旨在旨在提供实验室安全教育和考核的全面解决方案。该系统可以帮助实现实验室安全培训考试的在线化、智能化和规范化,提高实验室安全意识和能力,…

IntelliJ IDEA 面试题及答案整理,最新面试题

IntelliJ IDEA中的插件系统如何工作? IntelliJ IDEA的插件系统工作原理如下: 1、插件架构: IntelliJ IDEA通过插件架构扩展其功能,插件可以添加新的功能或修改现有功能。 2、安装和管理: 通过IDEA内置的插件市场下载…

第二门课:改善深层神经网络<超参数调试、正则化及优化>-超参数调试、Batch正则化和程序框架

文章目录 1 调试处理2 为超参数选择合适的范围3 超参数调试的实践4 归一化网络的激活函数5 将Batch Norm拟合进神经网络6 Batch Norm为什么会奏效?7 测试时的Batch Norm8 SoftMax回归9 训练一个SoftMax分类器10 深度学习框架11 TensorFlow 1 调试处理 需要调试的参…

R语言深度学习-5-深度前馈神经网络

本教程参考《RDeepLearningEssential》 本篇我们将学习如何建立并训练深度预测模型。我们将关注深度前馈神经网络 5.1 深度前馈神经网络 我们还是使用之前提到的H2O包,详细可以见之前的博客:R语言深度学习-1-深度学习入门(H2O包安装报错解决…

用 Visual Studio 调试器中查看内存中图像

返回目录:OpenCV系列文章目录(持续更新中......) 前一篇:OpenCV4.9.0在windows系统下的安装 后一篇: ​警告 本教程可以包含过时的信息。 Image Watch 是 Microsoft Visual Studio 的插件,可用于在调…

Webapi(.net6) 批量服务注册

如果不考虑第三方库,如Autofac这种进行服务注入,通过本身的.Core Weabpi实现的,总结了两种实现方法, 1.一种是参考abp框架里面的形式; 1.1 新建个生命周期的文件夹: 三个接口分别为: public interface IScopedDependency { }pu…

tomcat 实现会话绑定

Tomcat 后端服务器实现 Session ID会话保持 基础架构: 7-6 代理服务器nginx配置 7-3 tomcat 服务器 7-5 同理 测试: 此时刷新,会话ID一直在变,这样不好 如何解决呢? 不好的是确定ip之后,会一直在一台机上…