LInux 进程替换(理解系统调用)

目录

一、替换原理

二、替换函数

1、exec函数

2、命名理解

3、返回值

4、使用execl/lp、execv/vp

5、执行自定义命令

Makefile编译多个文件

命令行程序mycmd.c

传入自己的可执行文件

7、子进程都继承父进程环境变量

8、execle/ve修改子进程环境变量

9、exece函数为exec系列函数提供底层实现

三、理解系统调用(接口)

操作系统接口

Shell管理接口

四、内置命令和环境变量的关系

五、模拟实现简易的shell


一、替换原理

  • 当通过fork创建子进程后,子进程会开始执行与父进程相同的程序,但它们可能会执行不同的代码路径。
  • 通常,子进程随后会调用某种exec函数来运行一个全新的程序。这个调用导致子进程的用户空间内的代码和数据被新程序完全替代,并从新程序的入口点开始执行。
  • 值得注意的是,调用exec并不会创建一个新的进程;因此,该进程的标识符(PID)在调用exec之前和之后保持不变。

二、替换函数

1、exec函数

在Linux中,exec函数用于执行其他程序,它会将当前进程的地址空间替换为新程序的地址空间,从而实现程序的替换执行。六种以exec开头的函数,统称exec函数:

#include <unistd.h>`

  1. int execl(const char *path, const char *arg, ...);
  2. int execlp(const char *file, const char *arg, ...);
  3. int execle(const char *path, const char *arg, ...,char *const envp[]);
  4. int execv(const char *path, char *const argv[]);
  5. int execvp(const char *file, char *const argv[]);
  6. int execve(const char *path, char *const argv[], char *const envp[]);

2、命名理解

  • l(list) : 表示参数采用列表
  • v(vector) : 参数用数组
  • p(path) : 有p自动搜索环境变量PATH
  • e(env) : 表示自己维护环境变量

3、返回值

  • 所有这些函数,如果执行成功,都不会返回;它们会替换当前进程的映像,并从新程序的入口开始执行。
  • 如果有错误发生,这些函数会返回-1,不会发生替换。
    • #include <stdio.h>
      #include <unistd.h>
      #include <stdlib.h>int main()
      {printf("进程开始\n");execl("/usr/bin/lss","lss","-a","-l",NULL);printf("进程结束\n");return 0;
      }[hbr@VM-16-9-centos 6.replace]$ ./myproc
      进程开始
      进程结束
      
  • 这些区别主要在于参数传递方式的不同(列表vs数组)以及是否自动搜索PATH环境变量或手动指定环境变量。

4、使用execl/lp、execv/vp

1. execl(const char *path, const char *arg, ...);

用途:通过指定的路径执行程序,参数以逗号分隔的列表形式直接传递,列表必须以NULL结束。

参数

  • path:要执行的程序的路径。

  • arg:要传递给程序的第一个参数,通常为程序名称。

  • ...:后续参数,以NULL终止。

特点:参数以列表形式传递。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>int main()
{pid_t id=fork();if(id==0){printf("子进程开始运行,pid:%d\n",getpid());execl("/usr/bin/ls","ls","-a","-l",NULL);sleep(2);exit(1);}else{printf("父进程开始运行,pid:%d\n",getpid());int status=0;pid_t id=waitpid(-1,&status,0);if(id>0){printf("wait success,exit code:%d\n",WEXITSTATUS(status));}}return 0;
}[hbr@VM-16-9-centos 6.replace]$ ./myproc
父进程开始运行,pid:7607
子进程开始运行,pid:7608
total 36
789092 drwxrwxr-x 3 hbr hbr 4096 Mar 14 16:59 .
788707 drwxrwxr-x 8 hbr hbr 4096 Mar 13 12:42 ..
789097 -rw-rw-r-- 1 hbr hbr  289 Mar 14 14:55 execl1.c
789093 -rw-rw-r-- 1 hbr hbr   83 Mar 13 12:30 Makefile
789028 -rwxrwxr-x 1 hbr hbr 8664 Mar 14 16:59 myproc
789136 -rw-rw-r-- 1 hbr hbr  765 Mar 14 16:59 myproc.c
789090 drwxrwxr-x 2 hbr hbr 4096 Mar 13 16:16 myshell
wait success,exit code:0

2. execlp(const char *file, const char *arg, ...);

用途:功能与execl相似,但它在环境变量PATH中搜索file,不需要完整路径。

参数:

  • file:要执行的程序名称。

  • arg:第一个参数,通常是程序名称。

  • ...:后续参数,以NULL终止。

特点:PATH搜索文件,参数以列表形式传递。

execlp("ls","ls","-a","-l","-i",NULL);[hbr@VM-16-9-centos 6.replace]$ ./myproc
父进程开始运行,pid:9463
子进程开始运行,pid:9464
total 36
789092 drwxrwxr-x 3 hbr hbr 4096 Mar 14 17:05 .
788707 drwxrwxr-x 8 hbr hbr 4096 Mar 13 12:42 ..
789097 -rw-rw-r-- 1 hbr hbr  289 Mar 14 14:55 execl1.c
789093 -rw-rw-r-- 1 hbr hbr   83 Mar 13 12:30 Makefile
789028 -rwxrwxr-x 1 hbr hbr 8704 Mar 14 17:05 myproc
789136 -rw-rw-r-- 1 hbr hbr  814 Mar 14 17:05 myproc.c
789090 drwxrwxr-x 2 hbr hbr 4096 Mar 13 16:16 myshell
wait success,exit code:0

3. execv(const char *path, char *const argv[]);

用途:通过指定的路径执行程序,参数通过argv数组传递。

参数

  • path:程序的路径。

  • argv[]:一个指针数组,每个指针指向一个参数字符串,数组必须以NULL结束。

特点:参数以数组形式传递。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>int main()
{pid_t id=fork();if(id==0){printf("子进程开始运行,pid:%d\n",getpid());sleep(2);char *const _argv[10]={(char*)"ls",(char*)"-l",(char*)"-a",(char*)"-i",NULL };execv("/usr/bin/ls",_argv);exit(1);}else{printf("父进程开始运行,pid:%d\n",getpid());int status=0;pid_t id=waitpid(-1,&status,0);if(id>0){printf("wait success,exit code:%d\n",WEXITSTATUS(status));}}return 0;
}[hbr@VM-16-9-centos 6.replace]$ ./myproc
父进程开始运行,pid:7607
子进程开始运行,pid:7608//sleep两秒后执行
total 36
789092 drwxrwxr-x 3 hbr hbr 4096 Mar 14 16:59 .
788707 drwxrwxr-x 8 hbr hbr 4096 Mar 13 12:42 ..
789097 -rw-rw-r-- 1 hbr hbr  289 Mar 14 14:55 execl1.c
789093 -rw-rw-r-- 1 hbr hbr   83 Mar 13 12:30 Makefile
789028 -rwxrwxr-x 1 hbr hbr 8664 Mar 14 16:59 myproc
789136 -rw-rw-r-- 1 hbr hbr  765 Mar 14 16:59 myproc.c
789090 drwxrwxr-x 2 hbr hbr 4096 Mar 13 16:16 myshell
wait success,exit code:0

execvp(const char *file, char *const argv[]);

用途:功能与execv相似,但它在环境变量PATH中搜索file

参数

  • file:要执行的程序名称。
  • argv[]:参数数组,以NULL结束。

特点:在PATH搜索文件,参数以数组形式传递。

char *const _argv[10]={(char*)"ls",(char*)"-l",(char*)"-a",(char*)"-i",NULL };
execvp("ls",_argv);[hbr@VM-16-9-centos 6.replace]$ ./myproc
父进程开始运行,pid:10531
子进程开始运行,pid:10532
total 36
789092 drwxrwxr-x 3 hbr hbr 4096 Mar 14 17:08 .
788707 drwxrwxr-x 8 hbr hbr 4096 Mar 13 12:42 ..
789097 -rw-rw-r-- 1 hbr hbr  289 Mar 14 14:55 execl1.c
789093 -rw-rw-r-- 1 hbr hbr   83 Mar 13 12:30 Makefile
789028 -rwxrwxr-x 1 hbr hbr 8672 Mar 14 17:08 myproc
789136 -rw-rw-r-- 1 hbr hbr  844 Mar 14 17:08 myproc.c
789090 drwxrwxr-x 2 hbr hbr 4096 Mar 13 16:16 myshell
wait success,exit code:0

5、执行自定义命令

Makefile编译多个文件

  • .PHONY:all声明了一个伪目标all,意味着all不是一个真正的文件名,它的作用主要是作为一个便捷的方式来列出所有的默认构建目标。
  • all:exec mycmd定义了一个规则,它指出要构建all时,需要构建execmycmd这两个目标。
  • -o $@指定输出的可执行文件名,其中$@是自动变量,代表当前规则的目标名(execmycmd)。
  • $^是另一个自动变量,代表所有的依赖文件列表(这里分别是exec.cmycmd.c)。
[hbr@VM-16-9-centos 6.replace]$ cat Makefile 
.PHONY:all
all:exec mycmdexec:exec.cgcc -std=c99 -o $@ $^
mycmd:mycmd.cgcc -std=c99 -o $@ $^.PHONY:clean
clean:rm -f exec mycmd[hbr@VM-16-9-centos 6.replace]$ make
gcc -std=c99 -o mycmd mycmd.c[hbr@VM-16-9-centos 6.replace]$ ll
total 44
-rwxrwxr-x 1 hbr hbr 8664 Mar 14 17:25 exec
-rw-rw-r-- 1 hbr hbr  844 Mar 14 17:08 exec.c
-rw-rw-r-- 1 hbr hbr  289 Mar 14 14:55 execl.c
-rw-rw-r-- 1 hbr hbr  138 Mar 14 17:24 Makefile
-rwxrwxr-x 1 hbr hbr 8456 Mar 14 17:26 mycmd
-rw-rw-r-- 1 hbr hbr  364 Mar 14 17:26 mycmd.c
drwxrwxr-x 2 hbr hbr 4096 Mar 13 16:16 myshell

命令行程序mycmd.c

这是一个简单的命令行程序,它根据传入的参数执行不同的操作。

  • 首先,它检查是否有恰好两个参数(argc!=2),即程序名和一个额外的参数。如果不是,它会打印 "can not execute!" 并退出。
  • 接下来,它比较第二个参数(argv[1])与字符串 "-a" 和 "-b"。如果是 "-a",它打印 "command a";如果是 "-b",它打印 "command b";否则,它打印 "default!"。
  • 最后,程序正常结束。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main(int argc,char *argv[])
{if(argc!=2){printf("can not execute!\n");exit(1);}if(strcmp(argv[1],"-a")==0)printf("command a\n");else if(strcmp(argv[1],"-b")==0)printf("command b\n");elseprintf("default!\n");return 0;
}[hbr@VM-16-9-centos 6.replace]$ ./mycmd
can not execute!
[hbr@VM-16-9-centos 6.replace]$ ./mycmd -a
command a
[hbr@VM-16-9-centos 6.replace]$ ./mycmd -b
command b
[hbr@VM-16-9-centos 6.replace]$ ./mycmd -c
default!

传入自己的可执行文件

  • 在这个代码示例中使用的 execl 函数,是用来在当前进程中加载并执行一个新程序的。这个函数需要可执行文件的路径作为参数,而不是源代码文件。
  • 源代码文件不能直接被 execl 执行,因为它们是文本文件,需要先编译成机器可以理解和执行的二进制格式。
  • 当代码中使用 execl(myfile, "mycmd", "-b", NULL); 时,操作系统会查找路径 /home/hbr/linux/process/6.replace/mycmd 指向的可执行文件,加载它到当前进程的内存空间中,并开始执行。
  • 如果 myfile 变量指向的是一个 C 语言源代码文件,操作系统无法执行它,因为它不是二进制的可执行格式。 
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>//绝对路径和相对路径均可
//const char *myfile="/home/hbr/linux/process/6.replace/mycmd";
const char *myfile="./mycmd";int main()
{pid_t id=fork();if(id==0){printf("子进程开始运行,pid:%d\n",getpid());sleep(2);char *const _argv[10]={(char*)"ls",(char*)"-l",(char*)"-a",(char*)"-i",NULL };execl(myfile,"mycmd","-b",NULL);exit(1);}else{printf("父进程开始运行,pid:%d\n",getpid());int status=0;pid_t id=waitpid(-1,&status,0);if(id>0){printf("wait success,exit code:%d\n",WEXITSTATUS(status));}}return 0;
}
  • const char *myfile="./mycmd"; 这行代码定义了一个指向字符串的指针myfile,这个字符串包含了要执行的程序的路径。这里使用的是相对路径,意味着mycmd程序位于当前工作目录下。如果你的程序位于其他位置,你可以通过修改这个字符串来指定正确的路径,无论是绝对路径还是相对路径。

  • execl(myfile,"mycmd","-b",NULL); 这行代码实际上是在调用execl函数,用于在当前进程(这里是子进 程)中执行一个新的程序。execl函数的第一个参数是要执行的程序的路径,这里通过myfile变量传递。第二个参数是程序名,这里是"mycmd",它是传递给新程序的argv[0]的值。接下来的参数是传递给mycmd程序的命令行参数,在这个例子中只有一个"-b"。最后一个参数必须是NULL,标志着参数列表的结束。

[hbr@VM-16-9-centos 6.replace]$ make
gcc -std=c99 -o exec exec.c
gcc -std=c99 -o mycmd mycmd.c
[hbr@VM-16-9-centos 6.replace]$ ./exec 
父进程开始运行,pid:20549
子进程开始运行,pid:20550
command b
wait success,exit code:0

7、子进程都继承父进程环境变量

在操作系统中,当创建一个子进程时,无论是否执行了程序替换(例如,使用exec系列函数),子进程通常会继承父进程的环境变量。这种行为允许子进程访问父进程定义的环境设置,如路径设置、用户信息等。下面分两种情况进行详细讲解:

不执行程序替换的情况

在不执行程序替换的情况下,子进程是父进程的一个副本,除了进程ID等少数属性外。子进程继承了父进程的数据段、代码段、堆、栈以及环境变量等。因此,子进程可以使用和修改它继承的环境变量,这些修改不会影响父进程的环境变量,因为父子进程在内存中是隔离的。

执行程序替换的情况

执行程序替换(例如,通过exec系列函数)意味着子进程将放弃其代码段和数据段,以及堆和栈,转而加载一个新程序。但即便如此,新程序的执行环境仍然继承自父进程的环境变量。exec系列函数允许新程序访问这些环境变量,除非显式地通过调用exec函数的某些变体来改变它们(如execleexecve,这些变体允许调用者指定一个新的环境变量数组)。

为什么这么设计?

这种设计使得环境变量成为了进程间通信的一种简单而有效的方式。父进程可以通过设置环境变量来影响子进程的行为,而不必修改代码。例如,很多程序都会读取PATH环境变量来确定可执行文件的搜索路径,或者读取HOME变量来确定用户的家目录。

8、execle/ve修改子进程环境变量

execle(const char *path, const char *arg, ..., char *const envp[]);

用途:execl类似,但允许指定一个环境变量数组,用于新程序的执行环境。

参数:

  • path:程序的路径。

  • arg:第一个参数,通常是程序名称。

  • ...:后续参数,以NULL终止。

  • envp[]:指向环境变量字符串数组的指针,数组必须以NULL结束。

特点:参数以列表形式传递,可以指定环境变量。

execve(const char *path, char *const argv[], char *const envp[]);

用途:是exec系列函数中最全面的函数,它允许通过路径执行程序,同时指定参数和环境变量。

参数

  • path:程序的路径。

  • argv[]:参数数组,以NULL结束。

  • envp[]:环境变量数组,以NULL结束。

特点:参数和环境变量都以数组形式传递,提供最大的灵活性。

在这个场景中,环境变量MY_VAL的值1024是通过在子进程中使用execleexecve函数传递给新执行的程序mycmd的。这些函数允许你指定一个新的环境变量数组,这个数组会替换掉调用进程的环境变量。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main(int argc,char *argv[])
{if(argc!=2){printf("can not execute!\n");exit(1);}printf("获取环境变量:%s\n",getenv("MY_VAL"));if(strcmp(argv[1],"-a")==0)printf("command a\n");else if(strcmp(argv[1],"-b")==0)printf("command b\n");elseprintf("default!\n");return 0;
}#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>//const char *myfile="/home/hbr/linux/process/6.replace/mycmd";
const char *myfile="./mycmd";int main()
{pid_t id=fork();if(id==0){printf("子进程开始运行,pid:%d\n",getpid());char *const _env[10]={(char*)"MY_VAL=1024",NULL};execle(myfile,"mycmd","-a",NULL,_env);exit(1);}else{printf("父进程开始运行,pid:%d\n",getpid());int status=0;pid_t id=waitpid(-1,&status,0);if(id>0){printf("wait success,exit code:%d\n",WEXITSTATUS(status));}}return 0;
}[hbr@VM-16-9-centos 6.replace]$ ./exec 
父进程开始运行,pid:928
子进程开始运行,pid:929
获取环境变量:1024
command a
wait success,exit code:0char *const _mycmd[10]={(char*)"mycmd",(char*)"-a"};execve(myfile,_mycmd,_env);[hbr@VM-16-9-centos 6.replace]$ ./exec 
父进程开始运行,pid:3807
子进程开始运行,pid:3808
获取环境变量:1024
command a
wait success,exit code:0

我们通过打印出环境变量检测是否指定成功

设置环境变量: 在子进程中,通过定义一个包含环境变量定义的字符串数组_env,并将其作为execleexecve函数的最后一个参数传递,你可以设置新进程的环境变量。在这个例子中,_env数组定义了一个环境变量MY_VAL,其值为1024

char *const _env[10]={(char*)"MY_VAL=1024",NULL};

使用execleexecve执行程序: 当使用execleexecve函数时,你可以传递上面定义的环境变量数组_env给新程序。这样,新程序就会以这个新的环境变量集合启动。

使用execle:

execle(myfile,"mycmd","-a",NULL,_env);

或使用execve:

char *const _mycmd[10]={(char*)"mycmd",(char*)"-a"};
execve(myfile,_mycmd,_env);

在新程序中获取环境变量: 在mycmd程序中,使用getenv函数可以获取指定的环境变量的值。如果环境变量存在,getenv会返回指向该环境变量值的指针。

printf("获取环境变量:%s\n",getenv("MY_VAL"));

这样,当mycmd程序执行时,它会打印出获取环境变量:1024,显示了通过execleexecve传递并在新进程中设置的环境变量MY_VAL的值。

execle(myfile,"mycmd","-a",NULL,_env);[hbr@VM-16-9-centos 6.replace]$ ./exec 
父进程开始运行,pid:928
子进程开始运行,pid:929
获取环境变量:1024
command a
wait success,exit code:0char *const _mycmd[10]={(char*)"mycmd",(char*)"-a"};
execve(myfile,_mycmd,_env);[hbr@VM-16-9-centos 6.replace]$ ./exec 
父进程开始运行,pid:3807
子进程开始运行,pid:3808
获取环境变量:1024
command a
wait success,exit code:0

9、exece函数为exec系列函数提供底层实现

实际上,Linux中的exec系列函数(如execlexecpexecleexecvexecvpexecvpe等)最终都是通过调用execve函数来执行程序替换的。execveexec系列函数中最底层的实现,它直接与Linux内核交互来执行程序替换。其他exec函数提供了不同的接口以方便使用,在内部,它们会转换参数格式以符合execve的要求,然后调用execve

execve函数

execveexec系列函数中唯一一个直接由内核提供的系统调用。它的原型如下

int execve(const char *pathname, char *const argv[], char *const envp[]);
  • pathname是要执行的程序的路径。
  • argv是指向字符串数组的指针,这些字符串构成了传递给新程序的参数列表。
  • envp是指向字符串数组的指针,这些字符串构成了新程序的环境变量列表。

为什么也需要其他exec函数

尽管execve提供了执行程序替换所需的全部功能,但其接口对于日常使用来说可能不够方便或直观。例如,要执行一个程序并传递参数,使用execve需要手动构建参数和环境变量的数组。因此,其他exec函数提供了更简单或更适合特定场景的接口。

  • execlexeclp允许程序员直接在函数调用中列出所有参数,而不是通过数组传递。
  • execvexecvp接受参数数组,但它们不要求手动指定环境变量数组,而是自动使用当前进程的环境。
  • execle提供了一个显式指定环境变量数组的接口。
  • 特别的是,execvpexecvpe版本还会在环境变量中指定的路径列表中搜索程序文件名,而不是要求完整的路径名。

三、理解系统调用(接口)

内部和外部命令体现了Shell作为操作系统管理接口的能力,而操作系统接口(如系统调用)是这些命令实现其功能的基础。Shell通过将用户命令转化为对应的系统调用或内部操作,桥接了用户和操作系统之间的交互。

操作系统接口

  • 操作系统接口主要指的是操作系统提供给用户和程序员的编程接口,这些接口通常是一组系统调用。
  • 系统调用是操作系统的核心提供的服务,允许用户空间的程序执行诸如文件操作、进程控制和网络通信等操作系统级别的操作
  • 例如,当程序执行文件读写操作时,实际上是通过系统调用来实现的,系统调用作为用户程序和操作系统内核之间的桥梁。

Shell管理接口

Shell作为用户与操作系统之间的接口,提供了一种交互式的环境或脚本执行环境,使得用户可以通过命令来操作操作系统。Shell本身并不直接执行操作,而是通过解释命令来调用相应的程序或操作系统功能:

外部命令:这类命令对应于磁盘上的可执行程序,通常由第三方提供。当这类命令被执行时,Shell会创建一个新的子进程来运行对应的二进制文件。这意味着命令执行与Shell本身是隔离的,运行完毕后,控制权返回给Shell。外部命令的示例包括像lsgrep等大多数UNIX/Linux命令。

一些常见的内置命令包括:

  • cd:改变当前工作目录
  • echo:打印文本到标准输出
  • pwd:显示当前工作目录
  • export:设置环境变量

内置命令:这类命令直接由Shell自身实现,并在Shell的上下文中执行。这意味着这些命令可以直接访问和修改Shell的内部状态或环境。由于这些命令需要直接影响Shell本身或者为了效率考虑而不通过创建新进程来执行,它们是作为Shell的一部分实现的。典型的内置命令包括cdexport等,这些命令需要改变当前工作目录或者环境变量,对Shell的运行环境产生直接影响。

一些常见的外部命令包括:

  • ls:列出目录内容
  • grep:搜索文本
  • cat:连接文件并打印到标准输出
  • cp:复制文件或目录

四、内置命令和环境变量的关系

内置命令提供了一种机制来操作和配置环境变量,而环境变量则为内置命令(以及外部命令)的执行提供上下文和配置信息。这种相互作用是shell环境灵活和强大的原因之一。

内置命令和环境变量在shell中扮演着各自独特但互相关联的角色。它们之间的关系主要表现在以下几个方面:

  1. 环境变量配置内置命令行为:许多内置命令的行为可以通过设置特定的环境变量来调整。例如,内置命令echo在打印时,其行为可能会受到IFS(内部字段分隔符)环境变量的影响。

  2. 内置命令管理环境变量:Shell提供了一些内置命令来直接操作环境变量,如exportunset等。使用export可以设置或导出环境变量,以便在当前shell及其子shell中使用。unset命令可以用来删除环境变量。

  3. 环境变量影响命令查找:当执行任何命令时,shell通过PATH环境变量指定的目录列表来查找外部命令的可执行文件。虽然这直接关系到外部命令,但它也说明了环境变量对shell操作的全局影响,包括如何通过修改环境变量来影响内置命令处理外部命令的方式。

  4. 内置命令使用环境变量进行操作:某些内置命令在执行时会使用到特定的环境变量。例如,printenv内置命令(在某些shell版本中可用)可以打印当前的环境变量列表。

  5. 初始化和配置Shell环境:在启动shell时,特定的配置文件(如.bashrc.bash_profile/etc/profile等)会被读取和执行。这些文件中的命令经常包括使用内置命令设置环境变量的语句,以配置用户的shell环境。

五、模拟实现简易的shell

我们来实现一个简单的shell程序,它模拟了Linux shell的基本行为,包括接收命令行输入、解析命令和参数、执行命令,并显示执行结果。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <string.h>
#include <sys/types.h>#define NUM 1024
#define SIZE 32
#define SEP " "//分隔符(必须字符串)
//保存完整的命令行字符串
char cmd_line[NUM];
//保存打散之后的命令行字符串
char *g_argv[SIZE];//shell运行原理:通过让子进程执行命令,父进程等待&解析命令
int main()
{//0.命令行解释器一定是一个常驻内存的进程,不退出while(1){//1.打印出提示信息[hbr@localhost myshell]#printf("[root@localhost myshell]#");fflush(stdout);memset(cmd_line,'\0',sizeof cmd_line);//2.获取用户的键盘输入[输入的是各种指令和选项:"ls -a -l"]if(fgets(cmd_line,sizeof cmd_line,stdin)==NULL){continue;}//处理输入后的回车键导致的换行问题cmd_line[strlen(cmd_line)-1]='\0';printf("echo: %s\n",cmd_line);//3.命令行解析 "ls -a -l" -> "ls" "-a" "-l"g_argv[0]=strtok(cmd_line,SEP);//第一次调用,传入原始字符串int index=1;while(g_argv[index++]=strtok(NULL,SEP));//第二次还要解析原始字符串,传入NULL// for debug // for(index=0;g_argv[index];index++)// {//     printf("g_argv[%d]: %s\n",index,g_argv[index]);// }//4.TODO内置命令,让父进程(shell)自己执行的命令叫做内置命令、内建命令//cd命令不能在子进程运行if(strcmp(g_argv[0],"cd")==0){if(g_argv[1]!=NULL) chdir(g_argv[1]);continue;}//5.fork()pid_t id=fork();if(id==0){printf("下面功能让子进程进行的\n");execvp(g_argv[0],g_argv);exit(1);}int status=0;pid_t ret=waitpid(id,&status,0);if(ret>0) printf("exit code:%d\n",WEXITSTATUS(status));}return 0;
}
  1. 无限循环等待用户输入:程序首先进入一个无限循环,等待用户输入命令。这模拟了shell的常驻内存特性,即shell会一直运行,等待用户输入。

  2. 接收和处理用户输入:使用fgets函数从标准输入(键盘)读取一行命令,并用strtok函数将其拆分为命令和参数。这里的SEP定义为一个空格字符,用作命令和参数之间的分隔符。

  3. 内置命令处理:检查是否输入了cd命令,因为cd是一个内置命令,需要由当前的shell进程(而不是子进程)来执行。如果是cd命令,就调用chdir函数改变当前工作目录。

  4. 创建子进程执行外部命令:通过fork创建一个子进程。在子进程中,使用execvp函数执行用户输入的命令。execvp允许在环境变量PATH中搜索命令的可执行文件,并用提供的参数数组执行该命令。

  5. 父进程等待子进程结束:父进程(即原始的shell进程)使用waitpid函数等待子进程结束,并获取子进程的退出状态。

  6. 命令执行反馈:程序打印出每个命令的执行结果,包括命令输出和退出状态。

测试一下:

[hbr@VM-16-9-centos myshell]$ ./myshell 
[root@localhost myshell]#ls -a -l
echo: ls -a -l
下面功能让子进程进行的
total 28
drwxrwxr-x 2 hbr hbr 4096 Mar 13 16:16 .
drwxrwxr-x 3 hbr hbr 4096 Mar 13 15:16 ..
-rw-rw-r-- 1 hbr hbr   76 Mar 13 15:18 Makefile
-rwxrwxr-x 1 hbr hbr 9128 Mar 13 16:16 myshell
-rw-rw-r-- 1 hbr hbr 2074 Mar 13 16:16 myshell.c
exit code:0
[root@localhost myshell]#pwd
echo: pwd
下面功能让子进程进行的
/home/hbr/linux/process/6.replace/myshell
exit code:0
[root@localhost myshell]#cd ..
echo: cd ..
[root@localhost myshell]#pwd
echo: pwd
下面功能让子进程进行的
/home/hbr/linux/process/6.replace
exit code:0
[root@localhost myshell]#cd /
echo: cd /
[root@localhost myshell]#pwd
echo: pwd
下面功能让子进程进行的
/
exit code:0
[root@localhost myshell]#cd /home/hbr/linux/process/6.replace/myshell
echo: cd /home/hbr/linux/process/6.replace/myshell
[root@localhost myshell]#pwd
echo: pwd
下面功能让子进程进行的
/home/hbr/linux/process/6.replace/myshell
exit code:0
[root@localhost myshell]#^C
[hbr@VM-16-9-centos myshell]$ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/749316.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

编写测试用例的方法,这个是真的很好用

大家测试过程中经常用的等价类划分、边界值分析、场景法等&#xff0c;并不能覆盖所有的需求&#xff0c;我们之前讲过很少用到的因果图法&#xff0c;下面就来讲另一种不经常用到但又非常重要的测试用例编写方法——测试大纲法。 测试大纲法适用于有多个窗口&#xff0c;每个…

2024批量导出公众号所有文章生成目录,这下方便找文章了

公众号历史文章太多&#xff0c;手机上翻起来太费劲&#xff0c;怎么快速找到某一天的文章呢&#xff1f;比如深圳卫健委这个号从2014到2024发布近万篇文章。 公众号历史文章太多&#xff0c;手机上翻起来太费劲&#xff0c;怎么快速找到某一天的文章&#xff1f; 如果要找2020…

如何重置iPhone的网络设置?这里提供详细步骤

前言 本文介绍如何重置iPhone上的网络设置。该信息适用于iPhone 12到iPhone 6以及iOS 14到iOS 8。 如何在iPhone上重置网络设置 采取以下步骤重置iPhone上的网络设置&#xff1a; 1、在iPhone上&#xff0c;打开设置应用程序。 2、单击通用。 3、滚动到屏幕底部&#xff…

eplan新建符号及符号向量(实现新建符号旋转)

建符号之前先建符号库,这里直接新建符号 选择变量A,写符号名(英文字母),点确定 这时会打开一个空白页面,新建的符号在这里编辑 从原有的符号中插入过来直接编辑(也可自己画,最关键是自动引出线要加中断点) 插入进来后进行编辑: 编辑后: 符号向量A编辑完成后(保持符号编辑页面…

基于springboot实现酒店客房管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现酒店客房管理平台系统演示 摘 要 随着人们的物质水平的提高&#xff0c;旅游业和酒店业发展的速度越来越快。近年来&#xff0c;市面上酒店的数量和规模都在不断增加&#xff0c;如何提高酒店的管理效率和服务质量成为了一个重要的问题。伴随着信息技术的发…

2核4G服务器够用吗?性能测评自己看

腾讯云轻量2核4G5M带宽服务器支持多少人在线访问&#xff1f;5M带宽下载速度峰值可达640KB/秒&#xff0c;阿腾云以搭建网站为例&#xff0c;假设优化后平均大小为60KB&#xff0c;则5M带宽可支撑10个用户同时在1秒内打开网站&#xff0c;并发数为10&#xff0c;经阿腾云测试&a…

Day1-力扣刷题学习打卡

1、两数之和 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素在答案里不能重复出现。 你可以…

释放人工智能的力量:GPU服务器托管和高电机柜托管的关键作用

随着人工智能技术的不断发展&#xff0c;GPU服务器托管和高电机柜托管也变得愈发重要。这些技术在人工智能领域发挥着关键作用&#xff0c;为AI算法的训练和推理提供了强大的计算支持。 GPU服务器托管是指将GPU服务器放置在专门的数据中心中&#xff0c;通过云服务提供商提供的…

体系班第十七节(经典递归)

1汉诺塔 从左移到最右&#xff0c;圆盘必须满足小压大原则 写一个大方法&#xff0c;大方法包括两步&#xff1a;第一步将最后一个圆盘上面的所有的放到第二个塔上面&#xff0c;然后将最后一个圆盘放到最后塔上面&#xff0c;再把第二个塔上面圆盘全放在第三个塔上面 #incl…

C语言的位操作与位字段

C语言中的位操作允许程序员直接在整型变量的单个位或位组上进行操作。这种操作在许多低级编程任务中非常有用&#xff0c;尤其是在嵌入式系统编程中&#xff0c;如硬件操作、设备驱动及性能优化等场景。位操作主要使用以下几种位操作符&#xff1a; & &#xff08;按位与&a…

深入理解TCP:序列号、确认号和自动ACK的艺术

深入理解TCP&#xff1a;序列号、确认号和自动ACK的艺术 在计算机网络的世界里&#xff0c;TCP&#xff08;传输控制协议&#xff09;扮演着至关重要的角色。它确保了数据在不可靠的网络环境中可靠地、按顺序地传输。TCP的设计充满智慧&#xff0c;其中序列号&#xff08;Seq&a…

JavaSE-----认识异常【详解】

目录 一.异常的概念与体系结构&#xff1a; 1.1异常的概念&#xff1a; 1.2一些常见的异常&#xff1a; 1.3异常的体系结构&#xff1a; 1.4异常的分类&#xff1a; 二.异常的处理机制&#xff1a; 2.1 抛出异常&#xff1a; 2.2异常的捕获&#xff1a; 2.3try-catch-&…

某赛通电子文档安全管理系统 DecryptApplication 任意文件读取漏洞复现

0x01 产品简介 某赛通电子文档安全管理系统(简称:CDG)是一款电子文档安全加密软件,该系统利用驱动层透明加密技术,通过对电子文档的加密保护,防止内部员工泄密和外部人员非法窃取企业核心重要数据资产,对电子文档进行全生命周期防护,系统具有透明加密、主动加密、智能…

从零开始学习编程:迈出你的编程之路

标题 《从零开始学习编程&#xff1a;迈出你的编程之路》摘要引言如何开始学习编程&#xff1f;1. **明确学习目标**2. **选择编程语言**3. **学习资源**4. **练习编程**5. **参与社区**6. **持之以恒**7. **探索更多** 总结参考资料 博主 默语带您 Go to New World. ✍ 个人主…

阅读 - 二维码扫码登录原理

在日常生活中&#xff0c;二维码出现在很多场景&#xff0c;比如超市支付、系统登录、应用下载等等。了解二维码的原理&#xff0c;可以为技术人员在技术选型时提供新的思路。对于非技术人员呢&#xff0c;除了解惑&#xff0c;还可以引导他更好地辨别生活中遇到的各种二维码&a…

Ubuntu 14.04:PaddleOCR基于PaddleHub Serving的服务部署(失败)

目录 一、为什么使用一键服务部署 二、安装 paddlehub 1.8 2.1 安装前的环境准备 2.2 安装paddlehub 1.8 2.2.1 安装paddlehub 2.2.2 检测安装是否成功 2.2.3 检查本地与远端PaddleHub-Server的连接状态 2.2.4 测试使用 2.3 其他 2.3.1 如何卸载、pip常用命令、常见…

如何保存缓存和MySQL的双写一致呢?

如何保存缓存和MySQL的双写一致呢&#xff1f; 所谓的双写一致指的是&#xff0c;在同时使用缓存(如Redis)和数据库(如MySQL)的场景下,确保数据在缓存和数据库中的更新操作保持一致。当对数据进行修改的时候&#xff0c;无论是先修改缓存还是先修改数据库&#xff0c;最终都要保…

C语言内存函数详解

文章目录 前言一、memcpy函数&#xff08;内存拷贝函数&#xff09;二、memmove重叠拷贝函数三.memset内存设置函数四.memcmp内存比较函数总结 前言 我们之前按学习了C语言标准库中提供了一系列的字符和字符串库函数&#xff0c;接下来我们就学习一下关于内存相关的一些函数。…

Linux环境下Minio的安装部署与启动教程(完整版)

1、概述 MinIO是一个开源、分布式的对象存储系统&#xff0c;专为云原生环境设计。它提供了一个基于标准的Amazon S3兼容接口&#xff0c;使得开发者可以使用熟悉的API在私有云或边缘环境中部署和管理大规模非结构化数据&#xff0c;如图片、视频、日志文件等。 MinIO的核心特…

ChatGLM:基于ChatGLM-6B使用ptuning进行微调,实现类instruction的效果

由于业务需要&#xff0c;调研下怎么训练一个虚拟角色出来&#xff0c;所以找了一些文档参考&#xff0c;其中有一个基于ChatGLM-6B使用ptuning进行微调&#xff0c;实现类instruction的效果的现成的项目&#xff0c;给大家分享下。 一、介绍 由于ChatGLM-6B 不支持instructio…