微服务初识

1.认识微服务

随着互联网行业的发展,对服务的要求也越来越高,服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢?

1.1.单体架构

单体架构:将业务的所有功能集中在一个项目中开发,打成一个包部署。

在这里插入图片描述

单体架构的优缺点如下:

优点:

  • 架构简单
  • 部署成本低

缺点:

  • 耦合度高(维护困难、升级困难)

1.2.分布式架构

分布式架构:根据业务功能对系统做拆分,每个业务功能模块作为独立项目开发,称为一个服务。

在这里插入图片描述

分布式架构的优缺点:

优点:

  • 降低服务耦合
  • 有利于服务升级和拓展

缺点:

  • 服务调用关系错综复杂

分布式架构虽然降低了服务耦合,但是服务拆分时也有很多问题需要思考:

  • 服务拆分的粒度如何界定?
  • 服务之间如何调用?
  • 服务的调用关系如何管理?

人们需要制定一套行之有效的标准来约束分布式架构。

1.3.微服务

微服务的架构特征:

  • 单一职责:微服务拆分粒度更小,每一个服务都对应唯一的业务能力,做到单一职责
  • 自治:团队独立、技术独立、数据独立,独立部署和交付
  • 面向服务:服务提供统一标准的接口,与语言和技术无关
  • 隔离性强:服务调用做好隔离、容错、降级,避免出现级联问题

在这里插入图片描述

微服务的上述特性其实是在给分布式架构制定一个标准,进一步降低服务之间的耦合度,提供服务的独立性和灵活性。做到高内聚,低耦合。

因此,可以认为微服务是一种经过良好架构设计的分布式架构方案

但方案该怎么落地?选用什么样的技术栈?全球的互联网公司都在积极尝试自己的微服务落地方案。

其中在Java领域最引人注目的就是SpringCloud提供的方案了。

1.4.SpringCloud

SpringCloud是目前国内使用最广泛的微服务框架。官网地址:https://spring.io/projects/spring-cloud。

SpringCloud集成了各种微服务功能组件,并基于SpringBoot实现了这些组件的自动装配,从而提供了良好的开箱即用体验。

其中常见的组件包括:

在这里插入图片描述

另外,SpringCloud底层是依赖于SpringBoot的,并且有版本的兼容关系,如下:

在这里插入图片描述

1.5.总结

  • 单体架构:简单方便,高度耦合,扩展性差,适合小型项目。例如:学生管理系统

  • 分布式架构:松耦合,扩展性好,但架构复杂,难度大。适合大型互联网项目,例如:京东、淘宝

  • 微服务:一种良好的分布式架构方案

    ①优点:拆分粒度更小、服务更独立、耦合度更低

    ②缺点:架构非常复杂,运维、监控、部署难度提高

  • SpringCloud是微服务架构的一站式解决方案,集成了各种优秀微服务功能组件

2.服务拆分和远程调用

任何分布式架构都离不开服务的拆分,微服务也是一样。

2.1.服务拆分原则

这里我总结了微服务拆分时的几个原则:

  • 不同微服务,不要重复开发相同业务
  • 微服务数据独立,不要访问其它微服务的数据库
  • 微服务可以将自己的业务暴露为接口,供其它微服务调用

在这里插入图片描述

2.2.服务拆分示例

以微服务cloud-demo为例,其结构如下:

在这里插入图片描述

cloud-demo:父工程,管理依赖

  • order-service:订单微服务,负责订单相关业务
  • user-service:用户微服务,负责用户相关业务

要求:

  • 订单微服务和用户微服务都必须有各自的数据库,相互独立
  • 订单服务和用户服务都对外暴露Restful的接口
  • 订单服务如果需要查询用户信息,只能调用用户服务的Restful接口,不能查询用户数据库

2.3.实现远程调用案例

在order-service服务中,有一个根据id查询订单的接口:

在这里插入图片描述

根据id查询订单,返回值是Order对象,如图:

在这里插入图片描述

其中的user为null

在user-service中有一个根据id查询用户的接口:

在这里插入图片描述

查询的结果如图:

在这里插入图片描述

案例需求:

修改order-service中的根据id查询订单业务,要求在查询订单的同时,根据订单中包含的userId查询出用户信息,一起返回。

在这里插入图片描述

因此,我们需要在order-service中 向user-service发起一个http的请求,调用http://localhost:8081/user/{userId}这个接口。

大概的步骤是这样的:

  • 注册一个RestTemplate的实例到Spring容器
  • 修改order-service服务中的OrderService类中的queryOrderById方法,根据Order对象中的userId查询User
  • 将查询的User填充到Order对象,一起返回

注册RestTemplate

首先,我们在order-service服务中的OrderApplication启动类中,注册RestTemplate实例:

package cn.shen.order;import org.mybatis.spring.annotation.MapperScan;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;@MapperScan("cn.shen.order.mapper")
@SpringBootApplication
public class OrderApplication {public static void main(String[] args) {SpringApplication.run(OrderApplication.class, args);}@Beanpublic RestTemplate restTemplate() {return new RestTemplate();}
}

实现远程调用

修改order-service服务中的cn.shen.order.service包下的OrderService类中的queryOrderById方法:

在这里插入图片描述

2.4.提供者与消费者

在服务调用关系中,会有两个不同的角色:

服务提供者:一次业务中,被其它微服务调用的服务。(提供接口给其它微服务)

服务消费者:一次业务中,调用其它微服务的服务。(调用其它微服务提供的接口)

在这里插入图片描述

但是,服务提供者与服务消费者的角色并不是绝对的,而是相对于业务而言。

如果服务A调用了服务B,而服务B又调用了服务C,服务B的角色是什么?

  • 对于A调用B的业务而言:A是服务消费者,B是服务提供者
  • 对于B调用C的业务而言:B是服务消费者,C是服务提供者

因此,服务B既可以是服务提供者,也可以是服务消费者。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/747265.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣串题:反转字符串中的元音字母

​​​​​​​ 双指针&#xff0c;注意判断是否为元音的操作 bool IsVowel(char s){if(sa||se||si||so||su||sA||sE||sI||sO||sU) return true;return false; }char * reverseVowels(char * s){int len strlen(s),i0;while(i<len-1){if(IsVowel(s[i])&&IsVowel(s…

【C语言】五种方法实现C语言中大小写字母的转化

文章目录 &#x1f4dd;tolower/toupper函数&#x1f309;tolower&#x1f320; toupper &#x1f320; ASCII码关系&#x1f309;位操作&#x1f309;宏定义 &#x1f320;小巧第五位&#x1f6a9;总结 &#x1f4dd;tolower/toupper函数 &#x1f309;tolower tolower函数是…

YOLOv7改进 | 更换主干网络之PP-LCNet

前言:Hello大家好,我是小哥谈。PP-LCNet是一个由百度团队针对Intel-CPU端加速而设计的轻量高性能网络。它是一种基于MKLDNN加速策略的轻量级卷积神经网络,适用于多任务,并具有提高模型准确率的方法。与之前预测速度相近的模型相比,PP-LCNet具有更高的准确性。此外,对于计…

掘根宝典之C++普通迭代器和反向迭代器详解

简介 迭代器是一种用于遍历容器元素的对象。它提供了一种统一的访问方式&#xff0c;使程序员可以对容器中的元素进行逐个访问和操作&#xff0c;而不需要了解容器的内部实现细节。 C标准库里每个容器都定义了迭代器&#xff0c;这迭代器的名字就叫容器迭代器 迭代器的作用类…

数字电子技术笔记——组合逻辑功能

1.Adder&#xff08;加法器&#xff09; Half-Adder&#xff08;半加器&#xff09; Full-Adder&#xff08;全加器&#xff09; 74LS283(4-bit parallel adders) 74LS283 4-bit parallel adders 81 input 41 output carry look-ahead adder &#xff08;超前进位加法器&a…

牛客 NC266925 我不是大富翁(dp)

原题 首先记录这一道题的目的是提醒自己&#xff1a;动态规划的属性并不是只有 m a x max max&#xff0c; m i n min min 和 c o u n t count count&#xff0c;同时还有布尔类型的dp 这题不能考虑在距离的维度上思考&#xff0c;比如说看走几步走到哪里了&#xff0c;如果…

C++进阶之路---手把手带你学习AVL树

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、AVL树的概念 二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序二叉搜索树将退化为单支树&#…

图像处理与视觉感知---期末复习重点(3)

文章目录 一、空间域和频率域二、傅里叶变换三、频率域图像增强 一、空间域和频率域 1. 空间域&#xff1a;即所说的像素域&#xff0c;在空间域的处理就是在像素级的处理&#xff0c;如在像素级的图像叠加。通过傅立叶变换后&#xff0c;得到的是图像的频谱&#xff0c;表示图…

【深度学习笔记】9_9 语义分割和数据集

注&#xff1a;本文为《动手学深度学习》开源内容&#xff0c;部分标注了个人理解&#xff0c;仅为个人学习记录&#xff0c;无抄袭搬运意图 9.9 语义分割和数据集 在前几节讨论的目标检测问题中&#xff0c;我们一直使用方形边界框来标注和预测图像中的目标。本节将探讨语义分…

深度学习基础知识之Atrous卷积(空洞卷积)

太久不看代码确实生疏了&#xff0c;盯着一堆不同的dilation&#xff0c;不知道有什么作用&#xff0c;论文中说是Atrous卷积&#xff0c;原来就是空洞卷积的意思。 Dilated/Atrous Convolution 空洞卷积&#xff08;膨胀卷积/扩张卷积&#xff09; 空洞卷积是一种不增加参数量…

Web 服务器-Tomcat

文章目录 Web服务器一、Tomcat简介二、基本使用三、在IDEA中创建Maven Web项目四、在IDEA中使用Tomcat Web服务器 一、Tomcat简介 二、基本使用 三、在IDEA中创建Maven Web项目 四、在IDEA中使用Tomcat

外包干了9天,技术退步明显。。。。。

先说一下自己的情况&#xff0c;本科生&#xff0c;2018年我通过校招踏入了南京一家软件公司&#xff0c;开始了我的职业生涯。那时的我&#xff0c;满怀热血和憧憬&#xff0c;期待着在这个行业中闯出一片天地。然而&#xff0c;随着时间的推移&#xff0c;我发现自己逐渐陷入…

【C#】.net core 6.0 使用第三方日志插件Log4net,日志输出到控制台或者文本文档

欢迎来到《小5讲堂》 大家好&#xff0c;我是全栈小5。 这是《C#》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识点的理解和掌握。…

关于原型的一些总结

猛然发现太久没去复习了&#xff0c;于是复习了一些知识&#xff0c;顺便冒个泡。本次主要总结的知识点关于原型&#xff0c;再文章后半部分有原型相关的题&#xff0c;感兴趣的可直接观看。 一、原型 1.什么是原型 简单理解&#xff0c;原型就是一个对象&#xff0c;通过原…

Linux基础 想学好Linux请看这篇文章 Linux操作指令大全

当涉及学习 Linux 时&#xff0c;了解其基本原理和核心概念是至关重要的。Linux 是一种开源操作系统&#xff0c;广泛应用于服务器、嵌入式系统以及个人计算机中。它的灵活性、稳定性和安全性使得它成为许多 IT 专业人士和开发人员的首选。 第一步&#xff1a;了解基本概念和特…

CC连接过程

1、CC线连接过程 DFP和UFP会实时监控CC1和CC2引脚的电压&#xff0c;来评估DFP和UFP是否都已经在位。同时DFP可以根据电压确定自己所能提供的电流的大小 2、连接过程 Source端使用一个MOS管去控制Vbus&#xff0c;初始状态下&#xff0c;FET为关闭状态&#xff0c;Vbus不通。S…

苍穹外卖问题记录(持续更新)

Day01_3.2.4前后端联调 1. 前端无法登录 &#xff08;1&#xff09;确保nginx服务器已经启动 &#xff08;2&#xff09;查看自己数据库的用户名和密码是否和老师的一样&#xff0c;不一样的话需要在application-dev.yml文件中把老师的用户名密码修改成自己的 老师的用户名…

单⽬相机成像过程_看这一篇就够了

单⽬相机成像过程:看这一篇就够了 附赠宝贵的全套自动驾驶学习资料&#xff1a; 资料链接 附赠宝贵的全套自动驾驶学习资料&#xff1a; 资料链接

开发反应式API

开发反应式API 开发反应式API1 使用SpringWebFlux1.1 Spring WebFlux 简介1.2 编写反应式控制器 2 定义函数式请求处理器3 测试反应式控制器3.1 测试 GET 请求3.2 测试 POST 请求3.3 使用实时服务器进行测试 4 反应式消费RESTAPI4.1 获取资源4.2 发送资源4.3 删除资源4.4 处理错…

107. 如何使用Docker以及Docker Compose部署Go Web应用

文章目录 一、为什么需要Docker&#xff1f;二、Docker部署示例1. 准备代码2. 创建Docker镜像3. 编写Dockerfile4. Dockerfile解析5. 构建镜像6. 通过镜像创建容器运行 三、分阶段构建示例四、附带其他文件的部署示例五、关联其他容器六、Docker Compose模式七、总结 本文将介绍…