【数据结构】树与堆 (向上/下调整算法和复杂度的分析、堆排序以及topk问题)

文章目录

  • 1.树的概念
    • 1.1树的相关概念
    • 1.2树的表示
  • 2.二叉树
    • 2.1概念
    • 2.2特殊二叉树
    • 2.3二叉树的存储
  • 3.堆
    • 3.1堆的插入(向上调整)
    • 3.2堆的删除(向下调整)
    • 3.3堆的创建
      • 3.3.1使用向上调整
      • 3.3.2使用向下调整
      • 3.3.3两种建堆方式的比较
    • 3.4堆排序
    • 3.5TopK问题

在这里插入图片描述

1.树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。如下图:

在这里插入图片描述
有一个特殊的结点,称为根结点,根节点没有前驱结点。例如A节点

除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。
例如:B节点又可以分成一棵树,该树只有根,没有子树。
          D节点可以分为根节点和子树。D为根节点,只有一棵子树H。

因此树可以拆分为:根和子树。 每棵子树的根结点有且只有一个前驱,可以有0个或多个后继;所以,树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构,即:树中不能有环!。例如:
在这里插入图片描述
在这里插入图片描述

1.1树的相关概念

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
  • 叶节点或终端节点度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
  • 分支节点或非终端节点度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点,H是D的孩子节点
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先;P的祖先是A、E、J
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  • 森林:由m(m>0)棵互不相交的树的集合称为森林;

1.2树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系。所以树的结构应该怎么定义呢?

//假设树的度为6
#define N 6
struct TreeNode
{int val;struct TreeNode* Child[N];
};

如果这样定义的话,不管你子树有没有孩子都开辟了空间,会比较浪费。

struct TreeNode
{int val;struct TreeNode** Child;//使用顺序表存储孩子int size;//当前个数int capacity;//容量
};

既然浪费了空间,那咱们就动态申请,有几个孩子由size决定,不够就扩容,但这种结构好像也不太好。

struct TreeNode
{int val;struct TreeNode* leftChile;//左孩子struct TreeNode* nextBrother;//右兄弟
};

左孩子右兄弟法:这种方法设计的非常巧妙,每个节点只记录它左边第一个孩子,其它孩子是第一个孩子的兄弟,由第一个孩子记录。这种方法好像看起来是最好的
在这里插入图片描述

2.二叉树

2.1概念

二叉树是从树衍生出来的。
那什么叫二叉树呢?
二叉树:首先它是一棵树,其次它每个节点最多有两个分支;并且对两个分支进行区分,分别叫做左子树和右子树。如下图
在这里插入图片描述
从上图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:
在这里插入图片描述

2.2特殊二叉树

  1. 满二叉树

满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。
满二叉树的前n-1层全是满的(度为2),叶子全在最后一层
如果一个二叉树的层数为K,且结点总数是2k-1,则这个二叉树就是满二叉树。

在这里插入图片描述

  1. 完全二叉树

完全二叉树跟满二叉树的区别是:完全二叉树的前n-1层也都是满的,最后一层不一定满,但是要求从左到右的节点连续,不能空。(没有左孩子就不能有右孩子)

在这里插入图片描述

2.3二叉树的存储

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

  1. 顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树
在这里插入图片描述
使用顺序存储存在一个规律

  • leftChild = parent*2+1  

    • 例:C的左孩子的下标为2 * 2+1 = 5
  • rightChild = parent*2+2

    • 例:C的右孩子的下标为2 * 2+2 = 6
  • parent = (Child - 1) / 2  

    • 例:F的父亲下标为(5-1)/ 2 = 2     G的父亲下标为(6-1)/ 2 = 2
  • 有了这个规律我就不需要存储我的孩子或父亲在哪里,我使用下标算就可以了。

  1. 链式存储

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别 用来给出该结点左孩子和右孩子所在的链结点的存储地址,链式结构又分为二叉链和三叉链, 。
该结构一般用来存储非完全二叉树,不会有空间的浪费。
在这里插入图片描述

3.堆

  • 普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。
  • 完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储

堆:

  1. 堆是一棵完全二叉树。
  2. 小堆:任何一个父亲 <= 孩子
  3. 大堆:任何一个父亲 >= 孩子
  4. 根节点最大的堆叫做最大堆或大根堆根节点最小的堆叫做最小堆或小根堆

在这里插入图片描述
使用堆这种数据结构有什么好处呢?

TopK问题(找最值),最值就在根上。

3.1堆的插入(向上调整)

假设已存在一个堆,现需向堆中插入元素5。
在这里插入图片描述

void Swap(HeapDataType* x, HeapDataType* y)
{HeapDataType tmp = *x;*x = *y;*y = tmp;
}void AdjustUp(HeapDataType* a, int child)
{int parent = (child - 1) / 2;//while(parent >= 0)while (child){//孩子小于父亲if (a[child] < a[parent]){//交换Swap(&a[child], &a[parent]);//改变下标child = parent;//继续找父亲parent = (child - 1) / 2;}else{break;}}
}// 堆的插入
void HeapPush(Heap* php, HeapDataType x)
{assert(php);//扩容if (php->size == php->capacity){int newcapacity = php->capacity == 0 ? 4 : 2 * php->capacity;HeapDataType* tmp = (HeapDataType*)realloc(php->a, sizeof(HeapDataType)*newcapacity);if (tmp == NULL){perror("realloc");return;}php->a = tmp;php->capacity = newcapacity;}//将数据先插入到堆中php->a[php->size] = x;php->size++;//插入后向上调整,使其仍然是堆//开始调整的位置为数组末尾位置:size-1AdjustUp(php->a, php->size - 1);
}

思考:如何让一个数组变成堆?

将数组的值插入堆中即可

int main()
{Heap* heap = HeapCreate();int arr[] = { 1,4,7,3,9,10 };for (int i = 0; i < sizeof(arr)/sizeof(int); i++){HeapPush(heap, arr[i]);}HeapDestroy(heap);return 0;
}

3.2堆的删除(向下调整)

在这里插入图片描述

void AdjustDown(HeapDataType* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n)//有左孩子就继续{//找小的孩子//若右孩子存在 且 右孩子小于左孩子,右孩子是小孩子if (child+1 < n && a[child+1] < a[child]){child++;}//小孩子小于父亲,交换if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}// 堆的删除
void HeapPop(Heap* php)
{assert(php);assert(php->size);Swap(&php->a[0], &php->a[php->size - 1]);//交换php->size--;//删除数组尾位置AdjustDown(php->a, php->size, 0);
}

由于向下调整法最多调整高度次,那么它的时间复杂度是O(logN)

3.3堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?

3.3.1使用向上调整

从数组的第二个元素开始,使其按照小堆/大堆的规则调整成堆
在这里插入图片描述

void HeapCreat(Heap* php, HeapDataType* a, int n)
{assert(php);php->a = (HeapDataType*)malloc(sizeof(HeapDataType) * n);//申请和数组同样大的空间if (php->a == NULL){perror("malloc fail");return;}memcpy(php->a, a, sizeof(HeapDataType) * n);//将数组中的元素拷贝进堆php->size = n;php->capacity = n;//向上调整,使其成堆for (int i = 1; i < n; i++){AdjustUp(php->a, i);}
}

3.3.2使用向下调整

用向下调整法,我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。
其实本质上就是:从下往上,将根的每个子树调整成堆
在这里插入图片描述
由于最后一个元素的下标为n-1,所以它的父亲应该是:(其下标-1)/2,也就是(n-1-1)/2。

void HeapCreat(Heap* php, HeapDataType* a, int n)
{assert(php);php->a = (HeapDataType*)malloc(sizeof(HeapDataType) * n);//申请和数组同样大的空间if (php->a == NULL){perror("malloc fail");return;}memcpy(php->a, a, sizeof(HeapDataType) * n);//将数组中的元素拷贝进堆php->size = n;php->capacity = n;//向下调整,使其成堆for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(php->a, n, i);}
}

3.3.3两种建堆方式的比较

  1. 树的高度与节点个数的关系

在这里插入图片描述

  1. 向上调整法建堆时间复杂度的分析

在这里插入图片描述

因此,向上调整建堆的时间复杂度为:O(N*log2N)

  1. 向下调整法建堆时间复杂度的分析

在这里插入图片描述

因此,向下调整建堆的时间复杂度为:O(N)

O(N*log2N) 与O(N)看来两种方法的效率差别还是挺大的。为什么差别这么大呢?
在这里插入图片描述

3.4堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建堆
    升序:建大堆
    降序:建小堆

  2. 利用堆删除思想来进行排序
    首位交换
    最后一个值不看做堆里面的,向下调整选出次大的数据

在这里插入图片描述

#include<stdio.h>
void _Swap(int* a, int* b)
{int tmp = *a;*a = *b;*b = tmp;
}void _AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){//右孩子存在,且大于左孩子if (child + 1 < n && a[child + 1] > a[child]){child++;}//孩子大于父亲,交换if (a[child] > a[parent]){_Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;//孩子不大于父亲,调整结束}}
}int main()
{int arr[] = { 3,1,9,18,22,16 };int sz = sizeof(arr) / sizeof(arr[0]);//向下调整建堆for (int i = (sz - 1 - 1) / 2; i >= 0; i--){_AdjustDown(arr, sz, i);}int end = sz - 1;while (end > 0){_Swap(&arr[0], &arr[end]);//首位交换_AdjustDown(arr, end, 0);end--;}for (int i = 0; i < sz; i++){printf("%d ", arr[i]);}return 0;
}

在这里插入图片描述
所以堆排序的时间复杂度是:建堆O(N)+每个节点需要调整的次数(N-1)* logN 。 该排序的时间复杂度最终为:N*logN

3.5TopK问题

TOP-K问题:即求数据中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
    k个最大的元素,则建小堆
    k个最小的元素,则建大堆
  2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
  3. 将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
void TopK(int k)
{FILE* fp = fopen("data.txt", "r");if (fp == NULL){return;}int* heap = (int*)malloc(sizeof(int) * k);if (heap == NULL){perror("malloc fail");return;}//先读取k个数据for (int i = 0; i < k; i++){fscanf(fp, "%d", &heap[i]);}//根据k个数据建小堆for (int i = (k - 1 - 1) / 2; i >= 0; i--){_AdjustDown(heap, k, i);}int num = 0;while (fscanf(fp, "%d", &num) != EOF){//读取堆顶数据,比它大就替换它,进堆if (num > heap[0]){heap[0] = num;_AdjustDown(heap, k, 0);}}for (int i = 0; i < k; i++){printf("%d ", heap[i]);}fclose(fp);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/744901.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

河南大学数据分析可视化实验-数据分析基础

计算机与信息工程学院实验报告 姓名&#xff1a; 杨馥瑞 学号&#xff1a;2212080042专业&#xff1a;数据科学与大数据分析技术 年级&#xff1a; 2022 课程&#xff1a; 数据分析和可视化 主讲教师&#xff1a; 周黎鸣 辅导教师&#xff1a; 周黎鸣 …

MISC-Catflag

前言 开始拿到这道题&#xff0c;以为是要识别文件类型&#xff0c;后面发现不是&#xff0c;kali识别为ascii文本文件。而用010editor打开&#xff0c;又是一堆看不懂的码 后面发现有很多重复内容1B 5B 43等等&#xff0c;再看题目type flag or cat flag可以联想linux的cat命…

【1】Python零基础起步

什么是编程(Programming) 编程是编定程序的中文简称&#xff0c;就是让计算机代码解决某个问题&#xff08;目的&#xff09;&#xff0c;对某个计算体系规定一定的运算方式&#xff0c;使计算体系按照该计算方式运行&#xff0c;并最终得到相应结果的过程&#xff08;手段&am…

微信小程序(五十九)使用鉴权组件时原页面js自动加载解决方法(24/3/14)

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.使用覆盖函数的方法阻止原页面的自动执行方法 2.使用判断实现只有当未登录时才进行方法覆盖 源码&#xff1a; app.json {"pages": ["pages/index/index","pages/logs/logs"],…

【无标题】vmprotect net 混淆效果挺不错

vmprotect net 混淆效果挺不错,测试了一个&#xff0c;以前的写程序。用dnspy测试一下&#xff0c;效果非常好。 sunnf0451qq.com

1.MongoDB的特点与应用场景

什么是 MongoDB &#xff1f; MongoDB 是基于 C 开发的 NOSQL 开源文档数据库 &#xff0c;是最像关系型数据库的 nosql&#xff0c;功能也是最丰富的 nosql&#xff0c;它具有所以的可伸缩性&#xff0c;灵活性&#xff0c;高性能&#xff0c;高扩展性的优势。 大致有如下特…

基于SpringBoot的“实习管理系统”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“实习管理系统”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统首页界面图 学生注册界面图 后台登录界面图 …

【C++面向对象】C++飞机购票订票系统(源码+说明)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

好玩的css样式

1.鼠标悬浮文字跳动动画效果 <p class"dajianshi ">应用名称:</p> .dajianshi {font-size: 14px;color: black; }.dajianshi:hover {animation: animate 0.5s linear infinite; }keyframes animate {0%,25% {text-shadow: 2px 5px 2px rgb(255, 151, 15…

多维时序 | MATLAB实现BiTCN-selfAttention自注意力机制结合双向时间卷积神经网络多变量时间序列预测

多维时序 | MATLAB实现BiTCN-selfAttention自注意力机制结合双向时间卷积神经网络多变量时间序列预测 目录 多维时序 | MATLAB实现BiTCN-selfAttention自注意力机制结合双向时间卷积神经网络多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.M…

Docker容器化技术(使用Docker搭建论坛)

第一步&#xff1a;删除容器镜像文件 [rootlocalhost ~]# docker rm -f docker ps -aq b09ee6438986 e0fe8ebf3ba1第二步&#xff1a;使用docker拉取数据库 [rootlocalhost ~]# docker run -d --name db mysql:5.7 02a4e5bfffdc81cb6403985fe4cd6acb0c5fab0b19edf9f5b8274783…

美摄科技对抗网络数字人解决方案

在数字化浪潮的推动下&#xff0c;企业对于高效、创新且具备高度真实感的数字化解决方案的需求日益迫切。美摄科技凭借其在人工智能和计算机视觉领域的深厚积累&#xff0c;推出了一款全新的对抗网络数字人解决方案&#xff0c;该方案能够为企业构建出表情和动作都极为逼真的数…

Python环境搭建 -- Python与PyCharm安装

一、Python安装 我们先找到Python的官方网站&#xff0c;在浏览器中搜索Python即可&#xff0c;然后进入Python官网 点击Downloads&#xff0c;选择对应匹配的操作系统 点进去之后&#xff0c;Python的版本分为稳定的版本和前置版本&#xff0c;前置的版本就是还没有发行的版本…

【Flink SQL】Flink SQL 基础概念:SQL 的时间属性

Flink SQL 基础概念&#xff1a;SQL 的时间属性 1.Flink 三种时间属性简介2.Flink 三种时间属性的应用场景2.1 事件时间案例2.2 处理时间案例2.3 摄入时间案例 3.SQL 指定时间属性的两种方式4.SQL 事件时间案例5.SQL 处理时间案例 与离线处理中常见的时间分区字段一样&#xff…

服务器将动态IP设置成静态IP(内部网络)

话不多说,直接上干货 打开终端,输入命令行:ifconfig,查看你的网卡配置,此次设置的第一个,如下: 打开配置文件&#xff0c;一般在/etc/sysconfig/network-scripts/文件夹下&#xff1a; 编辑配置文件&#xff1a;vi ifcfg-eno1 修改IP地址分配方式&#xff1a; &#xff08;1&a…

Excel小技巧 (3) - 如何取整

1. 四舍五入 Round&#xff08;对象&#xff0c;小数点后位数&#xff09; 结果 123.1 2.向上取整 Roundup&#xff08;对象&#xff0c;小数点后位数&#xff09; 结果&#xff1a;123.2 3.向下取整 Round&#xff08;对象&#xff0c;小数点后位数&#xff09; 结果123.…

【string一些函数用法的补充】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 string类对象的修改操作 我们来看 c_str 返回c格式的字符串的操作&#xff1a; 我们来看 rfind 和 substr 的操作&#xff1a; string类非成员函数 我们来看 r…

REDHAWK——组件

文章目录 前言一、REDHAWK 核心资产1、REDHAWK 基本组件2、REDHAWK 基本设备3、REDHAWK 基本波形4、REDHAWK 共享库5、REDHAWK 设备依赖性 二、创建组件项目1、组件向导2、组件描述符3、端口4、属性5、记录6、为组件生成代码 三、创建并运行 Hello World 组件 前言 组件是模块…

【DAY09 软考中级备考笔记】机组:信息加密,系统可靠性

机组&#xff1a;信息加密&#xff0c;系统可靠性 3月8日 – 天气&#xff1a;晴 1. 信息加密 信息加密分为了对称加密和非对称加密&#xff1a; 对称加密&#xff1a;加密和解密的密钥相同且不公开 优点是加密速度快缺点是加密的强度不高&#xff0c;密钥分发困难常见算法&…

es 聚合操作(二)

书接上文&#xff0c;示例数据在上一篇&#xff0c;这里就不展示了 一、Pipeline Aggregation 支持对聚合分析的结果&#xff0c;再次进行聚合分析。 Pipeline 的分析结果会输出到原结果中&#xff0c;根据位置的不同&#xff0c;分为两类&#xff1a; Sibling - 结果和现有…