郭炜老师mooc第十一章数据分析和展示(numpy,pandas, matplotlib)

多维数组库numpy

numpy创建数组的常用函数

# numpy数组import numpy as np #以后numpy简写为np
print(np.array([1,2,3])) #>>[1 2 3]
print(np.arange(1,9,2)) #>>[1 3 5 7] 不包括9
print(np.linspace(1,10,4)) #>>[ 1. 4. 7. 10.]
# linespace(x,y,n),创建一个由区间[x,y]的n-1等分点构成的一维数组,包含x和yprint(np.random.randint(10,20,[2,3]))
#>>[[12 19 12]
#>> [19 13 10]]print(np.random.randint(10,20,5)) #>>[12 19 19 10 13]
a = np.zeros(3)
print(a) #>>[ 0. 0. 0.]
print(list(a)) #>>[0.0, 0.0, 0.0] 
# 列表每个元素之间有一个逗号隔开a = np.zeros((2,3),dtype=int) #创建一个2行3列的元素都是整数0的数组
print(a)

 numpy数组常用属性和函数

# numpy数组常用属性和函数import numpy as np
b = np.array([i for i in range(12)])
#b是[ 0 1 2 3 4 5 6 7 8 9 10 11]
print(b)a = b.reshape((3,4)) #转换成3行4列的数组,b不变
print(len(a)) #>>3 a有3行
print(a.size) #>>12 a的元素个数是12
print(a.ndim) #>>2 a是2维的
print(a.shape) #>>(3, 4) a是3行4列
print(a.dtype) #>>int32 a的元素类型是32位的整数
L = a.tolist() #转换成列表,a不变
print(L)
#>>[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
b = a.flatten() #转换成一维数组
print(b) #>>[ 0 1 2 3 4 5 6 7 8 9 10 11 ]

 numpy数组元素的增删

# numpy添加数组元素import numpy as np
a = np.array((1,2,3)) #a是[1 2 3]
b = np.append(a,10) #a不会发生变化
print(a)
print(b) #>>[ 1 2 3 10]
print(np.append(a,[10,20])) #>>[ 1 2 3 10 20]
c = np.zeros((2,3),dtype=int) #c是2行3列的全0数组
print(np.append(a,c)) #>>[1 2 3 0 0 0 0 0 0]
print(np.concatenate((a,[10,20],a)))
#>>[ 1 2 3 10 20 1 2 3]
print(np.concatenate((c,np.array([[10,20,30]]))))
#c拼接一行[10,20,30]得新数组
print(np.concatenate((c,np.array([[1,2],[10,20]])),axis=1))
#c的第0行拼接了1,2两个元素、第1行拼接了10,20两个新元素后得到新数素
# numpy删除数组元素import numpy as np
a = np.array((1,2,3,4))
b = np.delete(a,1) #删除a中下标为1的元素,a不会改变
print(b) #>>[1 3 4]
b = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
print("b删除前:\n",b,"\nb删除后:")print("按行删除:\n", np.delete(b,1,axis=0)) #删除b的第1行得新数组print("按列删除:\n", np.delete(b,1,axis=1)) #删除b的第1行得新数组#>>[[ 1 2 3 4]
#>> [ 9 10 11 12]]
print(np.delete(b,1,axis=1)) #删除b的第1列得新数组
print(np.delete(b,[1,2],axis=0)) #删除b的第1行和第2行得新数组
print(np.delete(b,[1,3],axis=1)) #删除b的第1列和第3列得新数组

在numpy数组中查找元素 

  • np.argwhere( a ):返回非0的数组元组的索引,其中a是要索引数组的条件。
  • np.where(condition) 当where内只有一个参数时,那个参数表示条件,当条件成立时,           where返回的是每个符合condition条件元素的坐标,返回的是以元组的形式。
# 在numpy数组中查找元素import numpy as np
a = np.array((1,2,3,5,3,4))
print("a: ", a)pos = np.argwhere(a==3) #pos是[[2] [4]]
print(pos)
# np.argwhere( a ):返回非0的数组元组的索引,其中a是要索引数组的条件。a = np.array([[1,2,3],[4,5,2]])
print(2 in a) #>>True
pos = np.argwhere(a==2) #pos是[[0 1] [1 2]]
print(pos)b = a[a>2] #抽取a中大于2的元素形成一个一维数组
print(b) #>>[3 4 5]
a[a > 2] = -1 #a变成[[ 1 2 -1] [-1 -1 2]]
print(a)

numpy数组的切片

 numpy数组的切片是“视图”,是原数组的一部分,而非一部分的拷贝

# numpy数组的切片是“视图”,是原数组的一部分,而非一部分的拷贝import numpy as np
a = np.arange(8) #a是[0 1 2 3 4 5 6 7]
b = a[3:6] #注意,b是a的一部分
print(b) #>>[3 4 5]
c = np.copy(a[3:6]) #c是a的一部分的拷贝
b[0] = 100 #会修改a
print(a) #>>[ 0 1 2 100 4 5 6 7]
print(c) #>>[3 4 5] c不受b影响
a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]])
print("a:\n", a)b = a[1:3,1:4] #b是>>[[ 6 7 8] [10 11 12]]
print("b:\n", b)

数据分析库pandas

Pandas 属于 Python 第三方数据处理库,它基于 NumPy 构建而来,主要用于数据的处理与分析。我们知道对于机器学习而言数据是尤为重要,如果没有数据就无法训练模型。Pandas 提供了一个简单高效的 DataFrame 对象(类似于电子表格),它能够完成数据的清洗、预处理以及数据可视化工作等。除此之外,Pandas 能够非常轻松地实现对任何文件格式的读写操作,比如 CSV 文件、json 文件、excel 文件。(小伟学长:第三节 基本人工智能工具的介绍与使用 · 语雀)

 pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)

Pandas 主要的数据结构是 Series(一维)与 DataFrame(二维)

Series是带标签的一维数组,可存储整数、浮点数、字符串、Python 对象等类型的数据,轴标签统称为索引.。

Pandas会默然用0到n-1来作为series的index,但也可以自己指定index(可以把index理解为dict里面的key)。

Series的使用

import pandas as pd
s = pd.Series(data = [80, 90, 100], index = ['Chinese', 'Math', 'English'])
#  pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)
# Pandas 主要的数据结构是 Series(一维)与 DataFrame(二维)print(s)for x in s:print(x, end = ' ') # x是data,不输出index
print("#####################")print(s['Chinese'], s[1])
print(s[0:2]['Math'])
print(s['Math':'English'][1])
for i in range(len(s.index)): #>>语文 数学 英语print(s.index[i],end = " $ ")
print('')
s['体育'] = 110 #在尾部添加元素,标签为'体育',值为110
s.pop('Math') #删除标签为'数学’的元素
s2 = s._append(pd.Series(120,index = ['政治'])) #不改变s
# pandas在0.20.0后移除这个append方法,你可以使用 _append 来替换append。print(s2['Chinese'],s2['政治']) #>>80 120
print(list(s2)) #>>[80, 100, 110, 120]print("s:\n", s)
print(s.sum(),s.min(),s.mean(),s.median())
#>>290 80 96.66666666666667 100.0 输出和、最小值、平均值、中位数
print(s.idxmax(),s.argmax()) #>>体育 2 输出最大元素的标签和下标

DataFrame的使用

DataFrame是带行列标签的二维表格,它的每一列都是一个Series

pd.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 

 【参考文章】:Pandas DataFrame的基本属性详解_pd.dataframe()有哪些参数-CSDN博客

DataFrame的构造和访问
# DataFrame的构造和访问
# DataFrame是带行列标签的二维表格,它的每一列都是一个Seriesimport pandas as pd
pd.set_option('display.unicode.east_asian_width',True)
#输出对齐方面的设置scores = [['男',108,115,97],['女',115,87,105],['女',100,60,130],['男',112,80,50]]
names = ['刘一哥','王二姐','张三妹','李四弟']
courses = ['性别','语文','数学','英语']
df = pd.DataFrame(data=scores,index = names,columns = courses)
# pd.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)print("df:")
print(df)print("df.values:")
print(df.values)
print("**************")print(df.values[0][1],type(df.values))#>>108 <class 'numpy.ndarray'>
print(list(df.index)) #>>['刘一哥', '王二姐', '张三妹', '李四弟']
print(list(df.columns)) #>>['性别', '语文', '数学', '英语']
print(df.index[2],df.columns[2]) #>>张三妹 数学
s1 = df['语文'] #s1是个Series,代表'语文'那一列
print("语文那一列:")
print(s1)print(s1['刘一哥'],s1[0]) #>>108 108 刘一哥语文成绩
print(df['语文']['刘一哥']) #>>108 列索引先写
s2 = df.loc['王二姐'] #s2也是个Series,代表“王二姐”那一行
print(s2['性别'],s2['语文'],s2[2])
#>>女 115 87 王二姐的性别、语文和数学分数
 DataFrame的切片:
#DataFrame的切片:
#iloc[行选择器, 列选择器] 用下标做切片
#loc[行选择器, 列选择器] 用标签做切片
#DataFrame的切片是视图
df2 = df.iloc[1:3] #行切片,是视图,选1,2两行
df2 = df.loc['王二姐':'张三妹'] #和上一行等价
print(df2)df2 = df.iloc[:,0:3] #列切片(是视图),选0、1、2三列
df2 = df.loc[:,'性别':'数学'] #和上一行等价
print(df2)df2 = df.iloc[:2,[1,3]] #行列切片
df2 = df.loc[:'王二姐',['语文','英语']] #和上一行等价
print(df2)df2 = df.iloc[[1,3],2:4] #取第1、3行,第2、3列
df2 = df.loc[['王二姐','李四弟'],'数学':'英语'] #和上一行等价
print(df2)
 DataFrame的分析统计
# DataFrame的分析统计print("---下面是DataFrame的分析和统计---")
print(df.T) #df.T是df的转置矩阵,即行列互换的矩阵
print(df.sort_values('语文',ascending=False)) #按语文成绩降序排列
# sort_values(....inplace=True,axis=1....) 则原地排序,将各列排序print(df.iloc[:, 1:].sum()['语文'],df.iloc[:, 1:].mean()['数学'],df.iloc[:, 1:].median()['英语'])
# >>435 85.5 101.0 语文分数之和、数学平均分、英语中位数
print(df.iloc[:, 1:].min()['语文'],df.iloc[:, 1:].max()['数学'])
#>>100 115 语文最低分,数学最高分print(df.iloc[:, 1:].max(axis = 1)['王二姐']) #>>115 王二姐的最高分科目的分数
print(df['语文'].idxmax()) #>>王二姐 语文最高分所在行的标签
print(df['数学'].argmin()) #>>2 数学最低分所在行的行号
print(df.loc[(df['语文'] > 100) & (df['数学'] >= 85)])
 DataFrame的修改和增删 
# DataFrame的修改和增删print("---下面是DataFrame的增删和修改---")
df.loc['王二姐','英语'] = df.iloc[0,1] = 150 #修改王二姐英语和刘一哥语文成绩df['物理'] = [80,70,90,100] #为所有人添加物理成绩这一列
df.insert(1,"体育",[89,77,76,45]) #为所有人插入体育成绩到第1列
df.loc['李四弟'] = ['男',100,100,100,100,100] #修改李四弟全部信息
df.loc[:,'语文'] = [20,20,20,20] #修改所有人语文成绩
df.loc['钱五叔'] = ['男',100,100,100,100,100] #加一行
df.loc[:,'英语'] += 10 #>>所有人英语加10分
df.columns = ['性别','体育','语文','数学','English','物理'] #改列标签
print(df)

删除函数是axis=0表示行,axis = 1表示列。

除了delete用axis=0表示行以外,其他的大部分函数都是axis=1来表示行。

链接:axis = 0,axis = 1到底表示按行计算还是按列计算-CSDN博客

df.drop( ['体育','物理'],axis=1, inplace=True) #删除体育和物理成绩
df.drop( '王二姐',axis = 0, inplace=True) #删除 王二姐那一行
print(df)
 用pandas读excel文档,读取的每张工作表都是一个DataFrame
# 用pandas读excel文档,读取的每张工作表都是一个DataFrameimport pandas as pdpd.set_option('display.unicode.east_asian_width',True)dt = pd.read_excel(r"D:\桌面\excel.xlsx",sheet_name=[0], index_col=0)#读取第0和第1张工作表df = dt[0] #dt是字典,df是DataFrame
print(df.iloc[0,0]) #>>4080 4080
print(df)

 不想写了,把郭炜老师的讲义截屏下来,后面想深入学习再来看。

 pandas读写csv文件

 

matplotlib

绘制基本直方图

matplotlib.pyplot.figure():
  • Create a new figure, or activate an existing figure.
  • 功能: 创建一个新的图形 或激活一个已有的图形
  • **注意: 若不添加描述,默认图形描述为figure1; **

 函数原型 subplot(nrows, ncols, index, **kwargs),一般我们只用到前三个参数,将整个绘图区域分成 nrows 行和 ncols 列,而 index 用于对子图进行编号。

add_subplot方法的参数是一个三位数:
百位上的数代表画布上下分成几块
十位上的数代表画布左右分成几块
个位上的数代表该块副画布的编号

 【参考链接】python matplotlib fig = plt.figure() fig.add_subplot()-CSDN博客

 

ax.set_title:设置图片的标题;
set_title(self, label, fontdict=None, loc=’center’, pad=None, **kwargs)
参数说明:
fontdict: 一个字典,比如fontdict={‘size’:16}
loc: 位于中间还是两边,可以是center, left, right

ax.set_xlabel:设置图片x轴的名称
ax.set_ylabel:设置图片y轴的名称
ax.set_xticks(x_ticks):设置图片x轴的刻度
ax.set_xticklabels(labels):设置图片x轴刻度上的标签

 注:

ax.set系列函数 的语法与 plt 等效
ax.set_ylabel() plt.ylabel()
ax.set_xlabel() plt.xlabel()
ax.set_xticks() plt.xticks()

 绘制基本直方图:

# 绘制基本直方图import matplotlib.pyplot as plt #以后 plt 等价于 matplotlib.pyplot
from matplotlib import rcParams
'''
rcParams 是 Matplotlib 库中的一个字典对象,用于存储和管理全局的默认参数配置。
在 Matplotlib 中,可以通过修改 rcParams 中的参数值来改变图形的默认行为。这些参数包括
图形的颜色、线型、线宽、字体样式、图像分辨率等。
rcParams 的全称是“runtime configuration parameters”,它在运行时控制着 Matplotlib 的行为。
通过修改 rcParams 中的参数,您可以自定义 Matplotlib 的默认设置,使其符合您的需求,
而无需在每个图形绘制时都手动指定这些参数。
'''rcParams['font.family'] = rcParams['font.sans-serif'] = 'SimHei'
#设置中文支持,中文字体为简体黑体ax = plt.figure().add_subplot() #建图,获取子图对象ax
'''
add_subplot方法的参数是一个三位数:
百位上的数代表画布上下分成几块
十位上的数代表画布左右分成几块
个位上的数代表该块副画布的编号
'''ax.bar(x = (0.2,0.6,0.8,1.2),height = (1,2,3,0.5), width = 0.1)
#x表示4个柱子中心横坐标分别是0.2,0.6,0.8,1.2
#height表示4个柱子高度分别是1,2,3,0.5
#width表示柱子宽度0.1'''
ax.bar(x, height, width, bottom, align)
该函数的参数说明,如下表所示:
x 一个标量序列,代表柱状图的x坐标,默认x取值是每个柱状图所在的中点位置,或者也可以是柱状图左侧边缘位置。
height 一个标量或者是标量序列,代表柱状图的高度。
width 可选参数,标量或类数组,柱状图的默认宽度值为 0.8。
bottom 可选参数,标量或类数组,柱状图的y坐标默认为None。
algin 有两个可选项 {“center”,“edge”},默认为 ‘center’,该参数决定 x 值位于柱状图的位置。
该函数的返回值是一个 Matplotlib 容器对象,该对象包含了所有柱状图。
'''
ax.set_title ('我的直方图') #设置标题
'''
ax.set_title:设置图片的标题;
set_title(self, label, fontdict=None, loc=’center’, pad=None, **kwargs)
参数说明:
fontdict: 一个字典,比如fontdict={‘size’:16}
loc: 位于中间还是两边,可以是center, left, rightax.set_xlabel:设置图片x轴的名称
ax.set_ylabel:设置图片y轴的名称
ax.set_xticks(x_ticks):设置图片x轴的刻度
ax.set_xticklabels(labels):设置图片x轴刻度上的标签
'''plt.show() 

绘制横向直方图:

barh(y, width, height=0.8, left=None, *, align='center', **kwargs)

matplotlib.pyplot.barh()绘制的都是水平条形图
    y,width,height与bar()里的x,height,width相反
    left等同于bar()里的bottom 不同的时left作用于x轴,bottom作用于y轴
    其他参数作用与bar()参数一致

# 绘制横向直方图import matplotlib.pyplot as plt #以后 plt 等价于 matplotlib.pyplot
from matplotlib import rcParams
'''
rcParams 是 Matplotlib 库中的一个字典对象,用于存储和管理全局的默认参数配置。
在 Matplotlib 中,可以通过修改 rcParams 中的参数值来改变图形的默认行为。这些参数包括
图形的颜色、线型、线宽、字体样式、图像分辨率等。
rcParams 的全称是“runtime configuration parameters”,它在运行时控制着 Matplotlib 的行为。
通过修改 rcParams 中的参数,您可以自定义 Matplotlib 的默认设置,使其符合您的需求,
而无需在每个图形绘制时都手动指定这些参数。
'''# rcParams['font.family'] = rcParams['font.sans-serif'] = 'SimHei'
#设置中文支持,中文字体为简体黑体ax = plt.figure().add_subplot() #建图,获取子图对象ax
'''
add_subplot方法的参数是一个三位数:
百位上的数代表画布上下分成几块
十位上的数代表画布左右分成几块
个位上的数代表该块副画布的编号
'''ax.barh(y = (0.2,0.6,0.8,1.2),width = (1,2,3,0.5), height = 0.1)
'''
barh(y, width, height=0.8, left=None, *, align='center', **kwargs)matplotlib.pyplot.barh()绘制的都是水平条形图y,width,height与bar()里的x,height,width相反left等同于bar()里的bottom 不同的时left作用于x轴,bottom作用于y轴其他参数作用与bar()参数一致
'''ax.set_title ('我的直方图') #设置标题
'''
ax.set_title:设置图片的标题;
set_title(self, label, fontdict=None, loc=’center’, pad=None, **kwargs)
参数说明:
fontdict: 一个字典,比如fontdict={‘size’:16}
loc: 位于中间还是两边,可以是center, left, rightax.set_xlabel:设置图片x轴的名称
ax.set_ylabel:设置图片y轴的名称
ax.set_xticks(x_ticks):设置图片x轴的刻度
ax.set_xticklabels(labels):设置图片x轴刻度上的标签
'''plt.show() 

 

绘制堆叠直方图

# 绘制堆叠直方图import matplotlib.pyplot as plt
ax = plt.figure().add_subplot()
labels = ['Jan', 'Feb', 'Mar', 'Apr']
num1 = [20, 30, 15, 35] #Dept1的数据
num2 = [15, 30, 40, 20] #Dept2的数据
cordx = range(len(num1)) #x轴刻度位置
rects1 = ax.bar(x = cordx, height=num1, width=0.5, color='red',label="Dept1")
rects2 = ax.bar(x = cordx, height=num2, width=0.5, color='green',label="Dept2", bottom=num1) 
# ax.bar(x, height, width, bottom, align)ax.set_ylim(0, 100) #y轴坐标范围
ax.set_ylabel("Profit") #y轴含义(标签)
ax.set_xticks(cordx) #设置x轴刻度位置,也就是在坐标轴下多出来的一竖
ax.set_xticklabels(labels) #设置x轴刻度下方文字
ax.set_xlabel("In year 2020") #x轴含义(标签)
ax.set_title("My Company") #设置图像名
'''
ax.set系列函数 的语法与 plt 等效
ax.set_ylabel() plt.ylabel()
ax.set_xlabel() plt.xlabel()
ax.set_xticks() plt.xticks()
'''ax.legend(loc = 2) #在右上角显示图例说明
'''
ax.legend()作用:在图上标明一个图例,用于说明每条曲线的文字显示
legend()有一个loc参数,用于控制图例的位置。 比如 plot.legend(loc=2) , 
这个位置就是4象项中的第二象项,也就是左上角。 loc可以为1,2,3,4 这四个数字。
'''plt.show()

绘制对比直方图(有多组数据)

# 绘制对比直方图(有多组数据)import matplotlib.pyplot as plt
ax = plt.figure(figsize=(10,5)).add_subplot()#建图,获取子图对象ax
ax.set_ylim(0,400) #指定y轴坐标范围
ax.set_xlim(0,80) #指定x轴坐标范围#以下是3组直方图的数据
x1 = [7, 17, 27, 37, 47, 57] #第一组直方图每个柱子中心点的横坐标
x2 = [13, 23, 33, 43, 53, 63] #第二组直方图每个柱子中心点的横坐标
x3 = [10, 20, 30, 40, 50, 60]
y1 = [41, 39, 13, 69, 39, 14] #第一组直方图每个柱子的高度
y2 = [123, 15, 20, 105, 79, 37] #第二组直方图每个柱子的高度
y3 = [124, 91, 204, 264, 221, 175]rects1 = ax.bar(x1, y1, facecolor='red', width=3, label = 'Iphone')
rects2 = ax.bar(x2, y2, facecolor='green', width=3, label = 'Huawei')
rects3 = ax.bar(x3, y3, facecolor='blue', width=3, label = 'Xiaomi')ax.set_xticks(x3) #x轴在x3中的各坐标点下面加刻度
ax.set_xticklabels(('A1','A2','A3','A4','A5','A6')) #指定x轴上每一刻度下方的文字
ax.legend() #显示右上角三组图的说明def label(ax,rects): #在rects的每个柱子顶端标注数值for rect in rects:height = rect.get_height()ax.text(rect.get_x() + rect.get_width()/2, height+14, str(height),rotation=90) #文字旋转90度
#         rect.get_x()获取rect这一条形左边的x坐标的值'''ax.text(x, y, s, fontdict=None, withdash=False, **kwargs):文本注释,只能填写文本 ;x,y:注释的坐标位置(标量)s:注释的内容(字符串) fontdict:重新设置注释内容的文本格式,包括字体颜色、背景大小和颜色、字体大小等(字典)withdash:创建一个替代注释内容“s”的对象,参照英文单词解释,这应该是一个破折号 ;rotation是kwargs中的一个参数rotation: [ angle in degrees| 'vertical'(垂直的) | 'horizontal(水平的)' ] '''label(ax,rects1)
label(ax,rects2)
label(ax,rects3)
plt.show()

 

绘制折线和散点图

# 绘制折线和散点图import math,random
import matplotlib.pyplot as pltrcParams['font.family'] = rcParams['font.sans-serif'] = 'SimHei'
#设置中文支持,中文字体为简体黑体0def drawPlot(ax):xs = [i / 100 for i in range(1500)] #1500个点的横坐标,间隔0.01ys = [10*math.sin(x) for x in xs]#对应曲线y=10*sin(x)上的1500个点的y坐标ax.plot(xs,ys,"red",label = "Beijing") #画曲线y=10*sin(x)ys = list(range(-18,18))random.shuffle(ys)  #将ys打乱ax.scatter(range(16), ys[:16], c = "blue") #画散点ax.plot(range(16), ys[:16], "blue", label="Shanghai") #画折线ax.legend() #显示右上角的各条折线说明ax.set_xticks(range(16)) #x轴在坐标0,1...15处加刻度ax.set_xticklabels(range(16)) #指定x轴每个刻度下方显示的文字ax = plt.figure(figsize=(10, 4),dpi=100).add_subplot() #图像长宽和清晰度(dpi)
drawPlot(ax)
plt.show()

饼状图

matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, rotatelabels=False, *, normalize=True, data=None)

 

 参考文章:python绘制饼图的方法详解_python_脚本之家

# 绘制饼图import matplotlib.pyplot as plt
def drawPie(ax):lbs = ('A', 'B', 'C', 'D') #四个扇区的标签sectors = [16, 29.55, 44.45, 10] #四个扇区的份额(百分比)expl = [0, 0.1, 0, 0] #四个扇区的突出程度ax.pie(x=sectors, labels=lbs, explode=expl, autopct='%.2f', shadow=True, labeldistance=1.1,pctdistance = 0.6,startangle = 90)'''matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, rotatelabels=False, *, normalize=True, data=None)'''ax.set_title("pie sample") #饼图标题ax = plt.figure().add_subplot()
drawPie(ax)
plt.show()

 绘制雷达图(了解)

# 绘制雷达图import matplotlib.pyplot as plt
from matplotlib import rcParams #处理汉字用
def drawRadar(ax):pi = 3.1415926labels = ['EQ','IQ','人缘','魅力','财富','体力'] #6个属性的名称attrNum = len(labels) #attrNum是属性种类数,此处等于6data = [7,6,8,9,8,2] #六个属性的值angles = [2*pi*i/attrNum for i in range(attrNum)]#angles是以弧度为单位的6个属性对应的6条半径线的角度angles2 = [x * 180/pi for x in angles]#angles2是以角度为单位的6个属性对应的半径线的角度ax.set_ylim(0, 10) #限定半径线上的坐标范围ax.set_thetagrids(angles2,labels,fontproperties="SimHei" )#绘制6个属性对应的6条半径ax.fill(angles,data,facecolor= 'g',alpha=0.25) #填充,alpha:透明度'''matplotlib.pyplot.fill(*args, data=None, **kwargs)*args:这个参数主要填写有序数对和颜色。每个多边形可以使用x坐标和y坐标构造,只要把这些点连接一起,再把里面的空间进行指定的颜色填充。ax.fill(x, y) # 使用默认的颜色填充一个多边形ax.fill(x, y, “b”) # 使用蓝色填充一个多边形ax.fill(x, y, x2, y2) # 使用默认颜色填充两个多边形ax.fill(x, y, “b”, x2, y2, “r”) # 一个蓝色,一个红色'''rcParams['font.family'] = rcParams['font.sans-serif'] = 'SimHei'
#处理汉字 
ax = plt.figure().add_subplot(projection = "polar") #生成极坐标形式子图
drawRadar(ax)
plt.show()

 绘制多层雷达图(了解)

# 绘制多层雷达图import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams['font.family'] = rcParams['font.sans-serif'] = 'SimHei'pi = 3.1415926
labels = ['EQ','IQ','人缘','魅力','财富','体力'] #6个属性的名称
attrNum = len(labels)
names = ('张三','李四','王五')
data = [[0.40,0.32,0.35], [0.85,0.35,0.30],
[0.40,0.32,0.35], [0.40,0.82,0.75],
[0.14,0.12,0.35], [0.80,0.92,0.35]] #三个人的数据angles = [2*pi*i/attrNum for i in range(attrNum)]
angles2 = [x * 180/pi for x in angles]ax = plt.figure().add_subplot(projection = "polar")
ax.fill(angles,data,alpha= 0.25) 
ax.set_thetagrids(angles2,labels)
ax.set_title('三巨头人格分析',y = 1.05) #y指明标题垂直位置
ax.legend(names,loc=(0.95,0.9)) #画出右上角不同人的颜色说明
plt.show()

一个窗口绘制多幅图:

matplotlib.pyplot 模块提供了 subplot2grid(),该函数能够在画布的特定位置创建 axes 对象(即绘图区域)。不仅如此,它还可以使用不同数量的行、列来创建跨度不同的绘图区域。与subplot() 和 subplots() 函数不同,subplot2gird()函数以非等分的形式对画布进行切分,并按照绘图区域的大小来展示最终绘图结果。

plt.subplot2grid(shape, location, rowspan, colspan)

参数含义如下:

  • shape:把该参数值规定的网格区域作为绘图区域;
  • location:在给定的位置绘制图形,初始位置 (0,0) 表示第1行第1列;
  • rowsapan/colspan:这两个参数用来设置让子区跨越几行几列。
# 一个窗口绘制多幅图:
#程序中的import、汉字处理及drawRadar、drawPie、drawPlot函数略,见前面程序fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(2,2,1) #窗口分割成2*2,取位于第1个方格的子图
drawPie(ax)ax = fig.add_subplot(2,2,2,projection = "polar")
drawRadar(ax)ax = plt.subplot2grid((2, 2), (1, 0), colspan=2)
#或写成: ax = fig.add_subplot(2,1,2)'''
plt.subplot2grid(shape, location, rowspan, colspan)
参数含义如下:shape:把该参数值规定的网格区域作为绘图区域;location:在给定的位置绘制图形,初始位置 (0,0) 表示第1行第1列;rowsapan/colspan:这两个参数用来设置让子区跨越几行几列。
'''drawPlot(ax)plt.figtext(0.05,0.05,'subplot sample') #显示左下角的图像标题
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/744837.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++ 】stack 和 queue

1. 标准库中的stack stack 的介绍&#xff1a; 1. stack是一种容器适配器&#xff0c;专门用在具有后进先出操作的上下文环境中&#xff0c;其删除只能从容器的一端进行 元素的插入与提取操作 2. stack是作为容器适配器被实现的&#xff0c;容器适配器即是对特定类封装作为其…

Solidity 智能合约开发 - 基础:基础语法 基础数据类型、以及用法和示例

苏泽 大家好 这里是苏泽 一个钟爱区块链技术的后端开发者 本篇专栏 ←持续记录本人自学两年走过无数弯路的智能合约学习笔记和经验总结 如果喜欢拜托三连支持~ 本篇主要是做一个知识的整理和规划 作为一个类似文档的作用 更为简要和明了 具体的实现案例和用法 后续会陆续给出…

RUST 每日一省:rust logo收集

rust的logo集合&#xff0c;看看有没有你喜欢的&#xff0c;挑一个吧&#xff1b; GitHub - XuHugo/rust-logo: Collection of logo images for all rust languages 下边只是挑选了几个&#xff0c;更多的还是看github吧。

Apache Doris 2.1.0 版本发布:开箱盲测性能大幅优化,复杂查询性能提升 100%

亲爱的社区小伙伴们&#xff0c;我们很高兴地向大家宣布&#xff0c;在 3 月 8 日我们引来了 Apache Doris 2.1.0 版本的正式发布&#xff0c;欢迎大家下载使用。 在查询性能方面&#xff0c; 2.1 系列版本我们着重提升了开箱盲测性能&#xff0c;力争不做调优的情况下取得较好…

第四百零二回

文章目录 知识回顾示例代码经验总结 我们在上一章回中介绍了MethodChannel的使用方法&#xff0c;本章回中将介绍EventChannel的使用方法.闲话休提&#xff0c;让我们一起Talk Flutter吧。 知识回顾 我们在前面章回中介绍了通道的概念和作用&#xff0c;并且提到了通道有不同的…

Qt 线程池 QThreadPool

一.Qt 线程池 QThreadPool介绍 Qt线程池是一种管理多个线程的并发编程模型&#xff0c;通过使用线程池可以提高性能、控制并发度、提供任务队列和简化线程管理。 在Qt中&#xff0c;线程池的使用主要涉及以下几个步骤&#xff1a; 创建任务类&#xff1a;需要定义一个任务类&am…

javaweb数据传参类型(2)

前言 友友们好呀&#xff0c;今天来分享一下对于各种数据类型传参的问题&#xff0c;今天陪伴我们的云海 目录 前言 数组集合传参 补充 日期参数 补充 Json格式数据传参 补充 路径参数 补充 今日分享 ​​​​​​​数组集合传参 类似于我们之前进行的简单的参数传递…

【C++】string的底层剖析以及模拟实现

一、字符串类的认识 C语言中&#xff0c;字符串是以\0结尾的一些字符的集合&#xff0c;为了操作方便&#xff0c;C标准库中提供了一些str系列的库函数&#xff0c; 但是这些库函数与字符串是分离开的&#xff0c;不太符合OOP的思想&#xff0c;而且底层空间需要用户自己管理&a…

Android14之禁止vbmeta.img签名校验(一百九十)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

区别于传统家!三翼鸟定制智慧家电家居一体化场景

在这个科技创新、智能AI主导的时代&#xff0c;寻求更便捷智慧、舒心适宜、一体化的居家场景&#xff0c;成为一个时代的命题和竞赛&#xff0c;也是家居行业共同奔赴的使命。在纷繁复杂的竞争格局和方向答案中&#xff0c;一条清晰坚定的路径正在显露出来…… AWE前一天&…

Jsp在Javaweb中扮演什么角色?

1.什么是Jsp JSP&#xff08;Java Server Pages&#xff0c;Java 服务器页面&#xff09;是一种动态网页技术&#xff0c;它允许在 HTML 页面中嵌入 Java 代码&#xff0c;并由 Web 服务器在请求页面时动态生成 HTML 页面。JSP 通常用于创建动态 Web 内容&#xff0c;如交互式表…

影城管理系统|基于springboot框架+ Mysql+Java+B/S架构的影城管理系统设计与实现(可运行源码+数据库+设计文档+部署说明)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 目录 前台功能效果图 管理员功能登录前台功能效果图 系统功能设计 数据库E-R图设计 lunwen参考 摘要 研究…

智慧文旅|AI数字人导览:让旅游体验不再局限于传统

AI数字人导览作为一种创新的展示方式&#xff0c;已经逐渐成为了VR全景领域的一大亮点&#xff0c;不仅可以很好的嵌入在VR全景中&#xff0c;更是能够随时随地为观众提供一种声情并茂的讲解介绍&#xff0c;结合VR场景的沉浸式体验&#xff0c;让观众仿佛置身于真实场景之中&a…

数据结构与算法--算法和算法分析

算法与数据结构之间存在密不可分的关系。简单来说&#xff0c;数据结构是存储和组织数据的方式&#xff0c;而算法则是操作和处理这些数据的方法。 首先&#xff0c;数据结构为算法提供了基础。算法是解决问题的步骤和流程&#xff0c;通过对数据结构进行操作&#xff0c;算法可…

【pyautogui】PyAutoGUI 的简单使用

文章目录 1 简介2 通用功能2.1 暂停/休眠/耗时2.2 自动防故障功能 3 鼠标控制3.1 移动鼠标3.2 获取鼠标指针位置3.3 点击鼠标3.4 拖动鼠标3.5 滚动鼠标3.6 常用方法 4 键盘控制4.1 输入字符串 write4.2 按键操作 press4.3 按下 & 释放4.4 组合键 hotkey4.5 键名 5 屏幕图像…

2.1 关系数据结构及形式化定义 数据库概论

目录 2.1.1 关系 关系&#xff1a;概念 1. 域&#xff08;Domain&#xff09; 2.笛卡尔积 元组&#xff08;Tuple&#xff09; 分量&#xff08;Component&#xff09; 基数&#xff08;Cardinal number&#xff09; 3. 关系 候选码&#xff08;Candidate key&#xf…

软件设计师17--磁盘管理

软件设计师17--磁盘管理 考点1&#xff1a;存储管理 - 磁盘管理调度算法磁盘调度 - FCFS磁盘调度 - SSTF例题&#xff1a; 考点1&#xff1a;存储管理 - 磁盘管理 存取时间寻道时间等待时间&#xff0c;训导时间是指磁头移动到磁道所需的时间&#xff1b;等待时间为等待读写的扇…

网工内推 | 上市公司网工,IE认证优先,最高18K*13薪,包吃住

01 深圳市宝腾互联科技有限公司 招聘岗位&#xff1a;网络工程师 职责描述&#xff1a; 1、是整个数据中心的网络技术及安全问题的负责人&#xff0c;确保数据中心业务的正常进行&#xff1b; 2、负责规划、设计、搭建、维护数据中心的网络环境&#xff0c;确保IDC /云平台&a…

python INI文件操作与configparser内置库

目录 INI文件 configparser内置库 类与方法 操作实例 导入INI文件 查询所有节的列表 判断某个节是否存在 查询某个节的所有键的列表 判断节下是否存在某个键 增加节点 删除节点 增加节点的键 修改键值 保存修改结果 获取键值 获取节点所有键值 其他读取方式 …

[Kali] 安装Nessus及使用

在官方网站下载对应的 Nessus 版本:Download Tenable Nessus | TenableDownload Nessus and Nessus Managerhttp://www.tenable.com/products/nessus/select-your-operating-system这里选择 Kali 对应的版本 一、安装 Nessus 1、下载得到的是 deb 文件,与