PaddleOCR学习笔记3-通用识别服务

今天优化了下之前的初步识别服务的python代码和html代码。

采用flask + paddleocr+ bootstrap快速搭建OCR识别服务。

代码结构如下:

模板页面代码文件如下:

upload.html :

<!DOCTYPE html>
<html>
<meta charset="utf-8">
<head><title>PandaCodeOCR</title><!--静态加载 样式--><link rel="stylesheet" href={{ url_for('static',filename='bootstrap3/css/bootstrap.min.css') }}></link><style>body {font-family: Arial, sans-serif;margin: 0;padding: 0;}.header {background-color: #f0f0f0;text-align: center;padding: 20px;}.title {font-size: 32px;margin-bottom: 10px;}.menu {list-style-type: none;margin: 0;padding: 0;overflow: hidden;background-color: #FFDEAD;border: 2px solid #DCDCDC;}.menu li {float: left;font-size: 24px;}.menu li a {display: block;color: #333;text-align: center;padding: 14px 16px;text-decoration: none;}.menu li a:hover {background-color: #ddd;}.content {padding: 20px;border: 2px solid blue;}</style>
</head>
<body>
<div class="header"><div class="title">PandaCodeOCR</div>
</div><ul class="menu"><li><a href="/upload/">通用文本识别</a></li>
</ul><div class="content"><!--上传图片文件--><div id="upload_file"><form id="fileForm" action="/upload/" method="POST" enctype="multipart/form-data"><div class="form-group"><input type="file" class="form-control" id="upload_file" name="upload_file"><label class="sr-only" for="upload_file">上传图片</label></div></form></div>
</div>
</div><div id="show" style="display: none;"><!--显示上传的图片--><div class="col-md-6" style="border: 2px solid #ddd;"><span class="label label-info">上传图片</span><!--静态加载 图片, url_for() 动态生成路径 --><img src="" alt="Image preview area..." title="preview-img" class="img-responsive"></div><div class="col-md-6" style="border: 2px solid #ddd;"><!--显示识别结果JSON报文列表--><span class="label label-info">识别结果:</span><!-- 结果显示区 --><div id="result_show">加载中......</div></div>
</div>
</body>
</html>
<!--静态加载 script-->
<script src={{ url_for('static',filename='jquery1.3.3/jquery.min.js') }}></script>
<script src={{ url_for('static',filename='js/jquery-form.js') }}></script>
<script type="text/javascript">var fileInput = document.querySelector('input[type=file]');var previewImg = document.querySelector('img');{#上传图片事件#}fileInput.addEventListener('change', function () {var file = this.files[0];var reader = new FileReader();//显示预览界面$("#show").css("display", "block");// 监听reader对象的的onload事件,当图片加载完成时,把base64编码賦值给预览图片reader.addEventListener("load", function () {previewImg.src = reader.result;}, false);// 调用reader.readAsDataURL()方法,把图片转成base64reader.readAsDataURL(file);//初始化输出结果信息$("#result_show").html("加载中......");{#上传图片识别表单事件,并显示识别结果信息#}{# ajaxSubmit 请求异步响应#}$("#fileForm").ajaxSubmit(function (data) {var inner = "";//alert(data['recognize_time'])//循环输出返回结果,响应识别结果为每行列表for (var i in data['result']) {var value = data['result'][i]['text'];inner += "<p class='text-left'>" + value + "</p>";}//清空输出结果信息$("#result_show").html("");//添加识别结果信息$("#result_show").append(inner);});}, false);
</script>

主要python代码文件如下:

myapp.py:

import json
import os
import timefrom flask import Flask, render_template, request, jsonifyfrom paddleocr import PaddleOCR
from PIL import Image, ImageDraw
import numpy as np# 应用名称,当前py名称,视图函数
app = Flask(__name__)# 项目文件夹的绝对路径
# BASE_DIR = os.path.dirname(os.path.abspath(__name__))
# 相对路径
BASE_DIR = os.path.dirname(os.path.basename(__name__))# 上传文件路径
UPLOAD_DIR = os.path.join(os.path.join(BASE_DIR, 'static'), 'upload')'''
PaddleOCR模型通用识别方法
'''
def rec_model_ocr(img):# 返回字典结果对象result_dict = {'result': []}# paddleocr 目前支持的多语言语种可以通过修改lang参数进行切换# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`# 使用CPU预加载,不用GPU# 模型路径下必须包含model和params文件,目前开源的v3版本模型 已经是识别率很高的了# 还要更好的就要自己训练模型了。ocr = PaddleOCR(det_model_dir='./inference/ch_PP-OCRv3_det_infer/',rec_model_dir='./inference/ch_PP-OCRv3_rec_infer/',cls_model_dir='./inference/ch_ppocr_mobile_v2.0_cls_infer/',use_angle_cls=True, lang="ch", use_gpu=False)# 识别图片文件result0 = ocr.ocr(img, cls=True)result = result0[0]for index in range(len(result)):line = result[index]tmp_dict = {}points = line[0]text = line[1][0]score = line[1][1]tmp_dict['points'] = pointstmp_dict['text'] = texttmp_dict['score'] = scoreresult_dict['result'].append(tmp_dict)return result_dict# 转换图片
def convert_image(image, threshold=None):# 阈值 控制二值化程度,不能超过256,[200, 256]# 适当调大阈值,可以提高文本识别率,经过测试有效。if threshold is None:threshold = 200print('threshold : ', threshold)# 首先进行图片灰度处理image = image.convert("L")pixels = image.load()# 在进行二值化for x in range(image.width):for y in range(image.height):if pixels[x, y] > threshold:pixels[x, y] = 255else:pixels[x, y] = 0return image@app.route('/')
def upload_file():return render_template('upload.html')@app.route('/upload/', methods=['GET', 'POST'])
def upload():if request.method == 'POST':# 每个上传的文件首先会保存在服务器上的临时位置,然后将其实际保存到它的最终位置。filedata = request.files['upload_file']upload_filename = filedata.filenameprint(upload_filename)# 保存文件到指定路径# 目标文件的名称可以是硬编码的,也可以从 ​request.files[file] ​对象的​ filename ​属性中获取。# 但是,建议使用 ​secure_filename()​ 函数获取它的安全版本if not os.path.exists(UPLOAD_DIR):os.makedirs(UPLOAD_DIR)img_path = os.path.join(UPLOAD_DIR, upload_filename)filedata.save(img_path)print('file uploaded successfully')start = time.time()print('=======开始OCR识别======')# 打开图片img1 = Image.open(img_path)# 转换图片, 识别图片文本# print('转换图片,阈值=220时,再转换为ndarray数组, 识别图片文本')# 转换图片img2 = convert_image(img1, 220)# Image图像转换为ndarray数组img_2 = np.array(img2)# 识别图片result_dict = rec_model_ocr(img_2)# 识别时间end = time.time()recognize_time = int((end - start) * 1000)result_dict["filename"] = upload_filenameresult_dict["recognize_time"] = str(recognize_time)result_dict["error_code"] = "000000"result_dict["error_msg"] = "识别成功"# render_template方法:渲染模板# 参数1: 模板名称  参数n: 传到模板里的数据# return render_template('result.html', result_dict=result_dict)# 将数据转换成JSON格式,一般用于ajax异步响应页面,不跳转页面用,等价下面方法# return json.dumps(result_dict, ensure_ascii=False), {'Content-Type': 'application/json'}# 将数据转换成JSON格式,一般用于ajax异步响应页面,不跳转页面用return jsonify(result_dict)else:return render_template('upload.html')if __name__ == '__main__':# 启动appapp.run(port=8000)

启动flask应用,测试结果如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/74244.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据挖掘的学习路径

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…

Docker实战:docker compose 搭建Sonar

1、docker-compose-sonar文件准备 进入/home/docker目录&#xff0c;新建docker-compose-sonar.yml文件&#xff0c;内容如下&#xff1a; version: 3 services: sonar:image: sonarqube:8.9.6-communityrestart: always container_name: sonarqubevolumes:# 设置与宿主机时间…

vue传递给后端时间格式问题

前端处理 首先前端使用moment.js进行处理 data.userEnrolDate moment(data.userEnrolDate).format(YYYY-MM-DD HH:mm:ss);后端处理 JsonFormat(timezone "GMT8", pattern "yyyy-MM-dd HH:mm:ss") DateTimeFormat(pattern "yyyy-MM-dd HH:mm:ss…

Redis常见命令

命令可以查看的文档 http://doc.redisfans.com/ https://redis.io/commands/ 官方文档&#xff08;英文&#xff09; http://www.redis.cn/commands.html 中文 https://redis.com.cn/commands.html 个人推荐这个 https://try.redis.io/ redis命令在线测试工具 https://githubfa…

C#上位机开发目录

C#上位机序列1: 多线程&#xff08;线程同步&#xff0c;事件触发&#xff0c;信号量&#xff0c;互斥锁&#xff0c;共享内存&#xff0c;消息队列&#xff09; C#上位机序列2: 同步异步(async、await) C#上位机序列3: 流程控制&#xff08;串行&#xff0c;并行&#xff0c…

Hive_Hive统计指令analyze table和 describe table

之前在公司内部经常会看到表的元信息的一些统计信息&#xff0c;当时非常好奇是如何做实现的。 现在发现这些信息主要是基于 analyze table 去做统计的&#xff0c;分享给大家 实现的效果某一个表中每个列的空值数量&#xff0c;重复值数量等&#xff0c;平均长度 具体的指令…

9、补充视频

改进后的dijkstra算法 利用小根堆 将小根堆特定位置更改,再改成小根堆 nodeHeap.addOrUpdateOrIgnore(edge.to, edge.weight + distance);//改进后的dijkstra算法 //从head出发,所有head能到达的节点,生成到达每个节点的最小路径记录并返回 public static HashMap<No…

Excel embed into a webpage

无法编辑嵌入式 Excel 网页版 工作簿&#xff0c;但具有适当权限的人员可能能够在 Excel 中打开嵌入的工作簿&#xff0c;他们可以在其中编辑数据。 通过制作一个浏览器&#xff0c;打开并编辑它 https://onedrive.live.com/embed? resid5FC97855340825A9%21135& aut…

分享 8 个 VSCode 插件,提升你的编码体验

大多数开发者都在不断寻找让开发工作更轻松的方法&#xff0c;我也是如此。合适的工具可以帮助你实现这一目标。 在本文中&#xff0c;我们将探讨我个人使用的八个扩展&#xff0c;以优化我的编码体验。让我们来看看这些扩展的列表&#xff0c;亲自体验它们如何改善你的编码体验…

leetcode897. 递增顺序搜索树(java)

递增顺序搜索树 题目描述中序遍历代码演示 递归专题 题目描述 难度 - 简单 LC - 897. 递增顺序搜索树 给你一棵二叉搜索树的 root &#xff0c;请你 按中序遍历 将其重新排列为一棵递增顺序搜索树&#xff0c;使树中最左边的节点成为树的根节点&#xff0c;并且每个节点没有左子…

如何让 Llama2、通义千问开源大语言模型快速跑在函数计算上?

:::info 本文是“在Serverless平台上构建AIGC应用”系列文章的第一篇文章。 ::: 前言 随着ChatGPT 以及 Stable Diffusion,Midjourney 这些新生代 AIGC 应用的兴起&#xff0c;围绕AIGC应用的相关开发变得越来越广泛&#xff0c;有呈井喷之势&#xff0c;从长远看这波应用的爆…

解除百度安全验证

使用chrome浏览器用百度浏览时&#xff0c;一直弹百度安全验证&#xff1a; 在设置里进行重置&#xff1a; 然后重启浏览器就可以了。

tls会话交互过程之一

一、过程概述 TLS&#xff08;传输层安全&#xff09;是一种用于在不安全网络上实现安全通信的协议。它的前身是SSL&#xff08;安全套接层&#xff09;。TLS通过一系列握手和消息交换过程来建立一个安全的通信通道。以下是TLS握手的基本步骤&#xff1a; TLS 握手过程&#x…

Leetcode:【169. 多数元素】

题目 给定一个大小为 n 的数组 nums &#xff0c;返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的&#xff0c;并且给定的数组总是存在多数元素。 难度&#xff1a;简单 题目链接&#xff1a;169. 多数元素 示例 1&#xff…

“系统的UI”——SystemUI

SystemUI的实现 以StatusBar为例&#xff0c;来分析下Android系统具体是如何实现它们的。 相关代码分为两部分&#xff0c;即&#xff1a; Service部分 代码路径&#xff1a;frameworks/base/services/java/com/android/server。 应用部分 代码路径&#xff1a;frameworks…

Dynamics 365应用程序开发 - 11. 通过学习路径培训用户

Dynamics 365学习路径是在Dynamics 365 9.0版本中引入的。此功能允许您在用户打开页面时在Dynamics 365中添加可自定义的帮助。它还允许用户遵循帮助并同时工作,提供了Dynamics365的适应性和轻松学习。 在本章中,将涵盖以下主题,以提高您对学习路径的理解: 学习路径概述学…

对接西部数据Western Digital EDI 系统

近期我们为国内某知名电子产品企业提供EDI解决方案&#xff0c;采用知行之桥 EDI 系统作为核心组件&#xff0c;成功与西部数据Western Digital&#xff08;简称西数&#xff09;建立EDI连接&#xff0c;实现数据安全且自动化传输。 EDI实施需求 EDI连接 传输协议&#xff1a;A…

c++ 学习之 静态成员变量和静态成员函数

文章目录 前言正文静态成员变量初始化操作如何理解共享一份数据访问权限 静态成员函数访问方式静态成员函数只能访问静态成员变量访问权限 前言 静态成员分为 1&#xff09;静态成员变量 所有对象共享一份数据在编译阶段分配空间类内声明&#xff0c;类外初始化 2&#xff09…

Spring 怎么解决循环依赖的呢?

Spring 怎么解决循环依赖 什么是循环依赖那 Spring 怎么解决循环依赖的呢&#xff1f;为什么要三级缓存&#xff1f;⼆级不⾏吗&#xff1f; 什么是循环依赖 Spring 循环依赖&#xff1a;简单说就是自己依赖自己&#xff0c;或者和别的 Bean 相互依赖。 只有单例的 Bean 才存在…

Qt之随机数

介绍使用qsrand和qrand生成随机数。 生成随机数 生成随机数主要用到了函数qsrand和qrand&#xff0c;qsrand用来设置种子点&#xff0c;该种子为qrand生成随机数的起始值。如果不调用qsrand,那么qrand()就会自动调用qsrand(1)&#xff0c;即系统默认将1作为随机数的起始值。使…