数据挖掘的学习路径

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
🐴作者:秋无之地

🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。

🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬

上一篇文章已经跟大家介绍过《数据分析综述》,相信大家对数据分析都有一个清楚的认识。下面我讲一下数据分析中比较重要的一环:数据挖掘的学习路径

一、数据挖掘的重要组成

一开始可能大家对数据挖掘还很陌生,有点无从下手的感觉。不用担心,接下来听我讲解就行。

想象一下,茫茫的大海上,孤零零地屹立着钻井,想要从大海中开采出宝贵的石油。对于普通人来说,大海是很难感知的,就更不用说找到宝藏了。但对于熟练的石油开采人员来说,大海是有坐标的。他们对地质做勘探,分析地质构造,从而发现哪些地方更可能有石油。然后用开采工具,进行深度挖掘,直到打到石油为止。

大海、地质信息、石油对开采人员来说就是数据源、地理位置、以及分析得到的结果。而我们要做的数据挖掘工作,就好像这个钻井一样,通过分析这些数据,从庞大的数据中发现规律,找到宝藏。

二、数据挖掘的基本流程

数据挖掘主要分为下面6个流程:

  1. 商业理解:数据挖掘不是我们的目的,我们的目的是更好地帮助业务,所以第一步我们要从商业的角度理解项目需求,在这个基础上,再对数据挖掘的目标进行定义。
  2. 数据理解:尝试收集部分数据,然后对数据进行探索,包括数据描述、数据质量验证等。这有助于你对收集的数据有个初步的认知。
  3. 数据准备:开始收集数据,并对数据进行清洗、数据集成等操作,完成数据挖掘前的准备工作。
  4. 模型建立:选择和应用各种数据挖掘模型,并进行优化,以便得到更好的分类结果。
  5. 模型评估:对模型进行评价,并检查构建模型的每个步骤,确认模型是否实现了预定的商业目标。
  6. 上线发布:模型的作用是从数据中找到金矿,也就是我们所说的“知识”,获得的知识需要转化成用户可以使用的方式,呈现的形式可以是一份报告,也可以是实现一个比较复杂的、可重复的数据挖掘过程。数据挖掘结果如果是日常运营的一部分,那么后续的监控和维护就会变得重要。

三、数据挖掘的十大算法

在众多的数据挖掘模型中,国际权威的学术组织 ICDM (the IEEE International Conference on Data Mining)评选出了十大经典的算法。

1. C4.5

C4.5 算法是得票最高的算法,可以说是十大算法之首。C4.5 是决策树的算法,它创造性地在决策树构造过程中就进行了剪枝,并且可以处理连续的属性,也能对不完整的数据进行处理。它可以说是决策树分类中,具有里程碑式意义的算法。

2. 朴素贝叶斯(Naive Bayes)

朴素贝叶斯模型是基于概率论的原理,它的思想是这样的:对于给出的未知物体想要进行分类,就需要求解在这个未知物体出现的条件下各个类别出现的概率,哪个最大,就认为这个未知物体属于哪个分类。

3. SVM

SVM 的中文叫支持向量机,英文是 Support Vector Machine,简称 SVM。SVM 在训练中建立了一个超平面的分类模型。

4. KNN

KNN 也叫 K 最近邻算法,英文是 K-Nearest Neighbor。所谓 K 近邻,就是每个样本都可以用它最接近的 K 个邻居来代表。如果一个样本,它的 K 个最接近的邻居都属于分类 A,那么这个样本也属于分类 A。

5. AdaBoost

Adaboost 在训练中建立了一个联合的分类模型。boost 在英文中代表提升的意思,所以 Adaboost 是个构建分类器的提升算法。它可以让我们多个弱的分类器组成一个强的分类器,所以 Adaboost 也是一个常用的分类算法。

6. CART

CART 代表分类和回归树,英文是 Classification and Regression Trees。像英文一样,它构建了两棵树:一棵是分类树,另一个是回归树。和 C4.5 一样,它是一个决策树学习方法。

7. Apriori

Apriori 是一种挖掘关联规则(association rules)的算法,它通过挖掘频繁项集(frequent item sets)来揭示物品之间的关联关系,被广泛应用到商业挖掘和网络安全等领域中。频繁项集是指经常出现在一起的物品的集合,关联规则暗示着两种物品之间可能存在很强的关系。

8. K-Means

K-Means 算法是一个聚类算法。假设每个类别里面,都有个“中心点”,即意见领袖,它是这个类别的核心。现在我有一个新点要归类,这时候就只要计算这个新点与 K 个中心点的距离,距离哪个中心点近,就变成了哪个类别。

9. EM

EM 算法也叫最大期望算法,是求参数的最大似然估计的一种方法。原理是这样的:假设我们想要评估参数 A 和参数 B,在开始状态下二者都是未知的,并且知道了 A 的信息就可以得到 B 的信息,反过来知道了 B 也就得到了 A。可以考虑首先赋予 A 某个初值,以此得到 B 的估值,然后从 B 的估值出发,重新估计 A 的取值,这个过程一直持续到收敛为止。EM 算法经常用于聚类和机器学习领域中。

10. PageRank

PageRank 起源于论文影响力的计算方式,如果一篇文论被引入的次数越多,就代表这篇论文的影响力越强。同样 PageRank 被 Google 创造性地应用到了网页权重的计算中:当一个页面链出的页面越多,说明这个页面的“参考文献”越多,当这个页面被链入的频率越高,说明这个页面被引用的次数越高。基于这个原理,我们可以得到网站的权重划分。

算法可以说是数据挖掘的灵魂,也是最精华的部分。看完上面的介绍,相信大家对十大算法有一个初步的了解,具体内容不理解没有关系,后面我会详细给大家进行讲解。

四、数据挖掘的数学原理

之前已经提到过,学好数据分析,数据基础是必须的。那是因为数据挖掘中的经典算法,如果不了解概率论和数理统计,是很难掌握算法的本质;如果不懂线性代数,就很难理解矩阵和向量运作在数据挖掘中的价值;如果没有最优化方法的概念,就对迭代收敛理解不深。所以说,想要更深刻地理解数据挖掘的方法,就非常有必要了解它后背的数学原理。

1. 概率论与数理统计

概率论在我们上大学的时候,基本上都学过,不过大学里老师教的内容,偏概率的多一些,统计部分讲得比较少。在数据挖掘里使用到概率论的地方就比较多了。比如条件概率、独立性的概念,以及随机变量、多维随机变量的概念。

2. 线性代数

向量和矩阵是线性代数中的重要知识点,它被广泛应用到数据挖掘中,比如我们经常会把对象抽象为矩阵的表示,一幅图像就可以抽象出来是一个矩阵,我们也经常计算特征值和特征向量,用特征向量来近似代表物体的特征。这个是大数据降维的基本思路。

3. 图论

社交网络的兴起,让图论的应用也越来越广。人与人的关系,可以用图论上的两个节点来进行连接,节点的度可以理解为一个人的朋友数。我们都听说过人脉的六度理论,在 Facebook 上被证明平均一个人与另一个人的连接,只需要 3.57 个人。当然图论对于网络结构的分析非常有效,同时图论也在关系挖掘和图像分割中有重要的作用。

4. 最优化方法

最优化方法相当于机器学习中自我学习的过程,当机器知道了目标,训练后与结果存在偏差就需要迭代调整,那么最优化就是这个调整的过程。一般来说,这个学习和迭代的过程是漫长、随机的。最优化方法的提出就是用更短的时间得到收敛,取得更好的效果

五、总结

下图是数据挖掘的知识清单,也是对本文内容的一个总结。

版权声明

本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/74243.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker实战:docker compose 搭建Sonar

1、docker-compose-sonar文件准备 进入/home/docker目录,新建docker-compose-sonar.yml文件,内容如下: version: 3 services: sonar:image: sonarqube:8.9.6-communityrestart: always container_name: sonarqubevolumes:# 设置与宿主机时间…

Redis常见命令

命令可以查看的文档 http://doc.redisfans.com/ https://redis.io/commands/ 官方文档(英文) http://www.redis.cn/commands.html 中文 https://redis.com.cn/commands.html 个人推荐这个 https://try.redis.io/ redis命令在线测试工具 https://githubfa…

Hive_Hive统计指令analyze table和 describe table

之前在公司内部经常会看到表的元信息的一些统计信息,当时非常好奇是如何做实现的。 现在发现这些信息主要是基于 analyze table 去做统计的,分享给大家 实现的效果某一个表中每个列的空值数量,重复值数量等,平均长度 具体的指令…

9、补充视频

改进后的dijkstra算法 利用小根堆 将小根堆特定位置更改,再改成小根堆 nodeHeap.addOrUpdateOrIgnore(edge.to, edge.weight + distance);//改进后的dijkstra算法 //从head出发,所有head能到达的节点,生成到达每个节点的最小路径记录并返回 public static HashMap<No…

分享 8 个 VSCode 插件,提升你的编码体验

大多数开发者都在不断寻找让开发工作更轻松的方法&#xff0c;我也是如此。合适的工具可以帮助你实现这一目标。 在本文中&#xff0c;我们将探讨我个人使用的八个扩展&#xff0c;以优化我的编码体验。让我们来看看这些扩展的列表&#xff0c;亲自体验它们如何改善你的编码体验…

leetcode897. 递增顺序搜索树(java)

递增顺序搜索树 题目描述中序遍历代码演示 递归专题 题目描述 难度 - 简单 LC - 897. 递增顺序搜索树 给你一棵二叉搜索树的 root &#xff0c;请你 按中序遍历 将其重新排列为一棵递增顺序搜索树&#xff0c;使树中最左边的节点成为树的根节点&#xff0c;并且每个节点没有左子…

如何让 Llama2、通义千问开源大语言模型快速跑在函数计算上?

:::info 本文是“在Serverless平台上构建AIGC应用”系列文章的第一篇文章。 ::: 前言 随着ChatGPT 以及 Stable Diffusion,Midjourney 这些新生代 AIGC 应用的兴起&#xff0c;围绕AIGC应用的相关开发变得越来越广泛&#xff0c;有呈井喷之势&#xff0c;从长远看这波应用的爆…

解除百度安全验证

使用chrome浏览器用百度浏览时&#xff0c;一直弹百度安全验证&#xff1a; 在设置里进行重置&#xff1a; 然后重启浏览器就可以了。

Leetcode:【169. 多数元素】

题目 给定一个大小为 n 的数组 nums &#xff0c;返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。 你可以假设数组是非空的&#xff0c;并且给定的数组总是存在多数元素。 难度&#xff1a;简单 题目链接&#xff1a;169. 多数元素 示例 1&#xff…

“系统的UI”——SystemUI

SystemUI的实现 以StatusBar为例&#xff0c;来分析下Android系统具体是如何实现它们的。 相关代码分为两部分&#xff0c;即&#xff1a; Service部分 代码路径&#xff1a;frameworks/base/services/java/com/android/server。 应用部分 代码路径&#xff1a;frameworks…

对接西部数据Western Digital EDI 系统

近期我们为国内某知名电子产品企业提供EDI解决方案&#xff0c;采用知行之桥 EDI 系统作为核心组件&#xff0c;成功与西部数据Western Digital&#xff08;简称西数&#xff09;建立EDI连接&#xff0c;实现数据安全且自动化传输。 EDI实施需求 EDI连接 传输协议&#xff1a;A…

c++ 学习之 静态成员变量和静态成员函数

文章目录 前言正文静态成员变量初始化操作如何理解共享一份数据访问权限 静态成员函数访问方式静态成员函数只能访问静态成员变量访问权限 前言 静态成员分为 1&#xff09;静态成员变量 所有对象共享一份数据在编译阶段分配空间类内声明&#xff0c;类外初始化 2&#xff09…

Spring 怎么解决循环依赖的呢?

Spring 怎么解决循环依赖 什么是循环依赖那 Spring 怎么解决循环依赖的呢&#xff1f;为什么要三级缓存&#xff1f;⼆级不⾏吗&#xff1f; 什么是循环依赖 Spring 循环依赖&#xff1a;简单说就是自己依赖自己&#xff0c;或者和别的 Bean 相互依赖。 只有单例的 Bean 才存在…

软件测试中的43个功能测试点总结

功能测试就是对产品的各功能进行验证&#xff0c;根据功能测试用例&#xff0c;逐项测试&#xff0c;检查产品是否达到用户要求的功能。针对web系统的常用测试方法如下&#xff1a; 1、页面链接检查&#xff1a; 每一个链接是否都有对应的页面&#xff0c;并且页面之间切换正…

设计模式系列-原型模式

一、上篇回顾 上篇创建者模式中&#xff0c;我们主要讲述了创建者的几类实现方案&#xff0c;和创建者模式的应用的场景和特点&#xff0c;创建者模式适合创建复杂的对象&#xff0c;并且这些对象的每 个组成部分的详细创建步骤可以是动态的变化的&#xff0c;但是每个对象的组…

剑指 Offer 07. 重建二叉树

题目描述 输入某二叉树的前序遍历和中序遍历的结果&#xff0c;请构建该二叉树并返回其根节点。 假设输入的前序遍历和中序遍历的结果中都不含重复的数字。 解题思路 首先&#xff0c;根据前序遍历结果确定根节点。前序遍历的第一个元素即为根节点的值。 接下来&#xff0c…

第29节-PhotoShop基础课程-滤镜库

文章目录 前言1.滤镜库2.Camera Raw滤镜 &#xff08;用来对图片进行预处理&#xff0c;最全面的一个&#xff09;3.神经滤镜&#xff08;2022插件 需要先下载&#xff09;4.液化&#xff08;胖-> 瘦 矮->高&#xff09;5.其它滤镜1.自适应广角2.镜头矫正 把图片放正3.消…

Kafka详解

目录 一、消息系统 1、点对点的消息系统 2、发布-订阅消息系统 二、Apache Kafka 简介 三、Apache Kafka基本原理 3.1 分布式和分区&#xff08;distributed、partitioned&#xff09; 3.2 副本&#xff08;replicated &#xff09; 3.3 整体数据流程 3.4 消息传送机制…

JP《乡村振兴振兴战略下传统村落文化旅游设计》许少辉书香续,山水长

JP《乡村振兴振兴战略下传统村落文化旅游设计》许少辉书香续&#xff0c;山水长

Vue2+Vue3基础入门到实战项目(前接六 副线一)—— 面经 项目

day1 接口文档地址&#xff1a;https://www.apifox.cn/apidoc/project-934563/api-20384515 一、项目功能演示 1.目标 启动准备好的代码&#xff0c;演示移动端面经内容&#xff0c;明确功能模块 2.项目收获 二、项目创建目录初始化 vue-cli 建项目 1.安装脚手架 (已安装…