第4章_瑞萨MCU零基础入门系列教程之瑞萨 MCU 源码设计规范

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写,需要的同学可以在这里获取: https://item.taobao.com/item.htm?id=728461040949

配套资料获取:https://renesas-docs.100ask.net

瑞萨MCU零基础入门系列教程汇总: https://blog.csdn.net/qq_35181236/article/details/132779862


第4章 瑞萨 MCU 源码设计规范

本章目标

  • 了解 FSP 源码结构和设计规范
  • 理解模块设计思路与调用方法

4.1 总体框架

4.1.1 源码层次与目录

瑞萨给开发者提供了“灵活配置软件包”(FSP,Flexible Software Package),从底往上提供了多层次的软件,如下图所示:

image1

从下往上可以分为这几层:

  1. 板级支持包(BSP,Board Support Package):简单地说,从上电开始执行的第 1 条指令直到 main 函数,这个过程的代码就是 BSP 提供的。它的主要任务是确保 MCU 从复位状态切换为用户应用程序状态。在此过程中,它将设置时钟、中断、栈、堆及 C 语言运行环境。它还会配置端口的 I/O 引脚,并执行任何特定的电路板初始化。函数以"R_BSP_"开头,宏以"BSP_“开头,数据类型以”_bsp"开头。
  2. 硬件抽象层驱动(HAL,Hardware Abstraction Layer Drivers):简单地说,使用 BSP的代码可以让程序运行到 main 函数,但是在 main 函数里怎么去访问 GPIO、I2C、SPI 等设备,需要使用 HAL 的代码。HAL 就是对 MCU 寄存器操作的封装,通过 HAL 函数,编写程序时无需关注底层具体的硬件操作,而是把精力放在更上层的操作上,这样编写的代码也更容易移植到其他 MCU 上。函数名以"R_"开头。
  3. 中间件(Middleware):中间件层位于 HAL 层之上、用户应用程序之下,为应用程序提供功能栈和协议。比如想模拟一个 USB 串口时,HAL 层已经实现了 USB 的传输,而 USB 串口协议是在 USB 传输之上实现的一套机制,USB 串口协议是一套纯软件的协议,可以归为中间件。
  4. 实时操作系统(RTOS,Real Time Operating System):它仅仅依赖于底下的 BSP,提供多任务、同步互斥等功能。
  5. 应用程序(Application):在最上层,它可以使用 HAL 函数访问硬件,也可以使用中间件完成复杂的功能。

以第 1 个程序为例,工程目录如下:

  1. BSP 源码:从文件名字可以知道功能为启动、系统、时钟/中断相关的操作
  1. HAL 源码:这个程序只涉及 GPIO 的操作,所以只有 ioport 相关的 HAL 源码
  1. BSP 的配置文件:这些文件是 FSP 的配置工具生成的,里面是 BSP 相关的参数
  1. 用户数据:比如用户在 FSP 配置界面选择使用哪些 GPIO、哪些 SPI 控制器

  1. 用户代码(Application):可以在 hal_entry.c 里添加自己的代码

image2.4

  1. 链接脚本:使用 e2 studio 时,它是使用 GNU GCC 工具链来编译程序,需要链接脚本

4.1.2 调用过程示例

以工程“MyBlinkyProject”为例,在 hal_entry.c 中,操作 LED 的代码如下:

void hal_entry(void)
{/* TODO: add your own code here */extern bsp_leds_t g_bsp_leds;bsp_leds_t Leds = g_bsp_leds;while (1){g_ioport.p_api->pinWrite(&g_ioport.p_ctrl, Leds.p_leds[BSP_LED_LED1],         			BSP_IO_LEVEL_LOW);R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);g_ioport.p_api->pinWrite(&g_ioport.p_ctrl, Leds.p_leds[BSP_LED_LED1],        			BSP_IO_LEVEL_HIGH);R_BSP_SoftwareDelay(1, BSP_DELAY_UNITS_SECONDS);}
#if BSP_TZ_SECURE_BUILD/* Enter non-secure code */R_BSP_NonSecureEnter();
#endif
}
  • 第9行的“g_ioport.p_api->pinWrite”就是调用r_ioport.c里的“R_IOPORT_PinWrite”函数,这是 Application 对 HAL 库函数的调用。

4.2 模块设计思想

使用 FSP 编写程序时有 4 个层次:Application 是用户编写的,Middleware 是第 3 方的代码,BSP 的代码量很少,所以 HAL 层是 FSP 的核心。HAL 层是各个模块的驱动程序,这些驱动程序被称为Module,一个Module向上提供接口供人调用,向下可能要用到其他Module,如下:

怎么使用一个 Module 提供的接口呢?以工程“MyBlinkyProject”为例,有以下 2 种方法调用 r_ioport.c 提供接口:

g_ioport.p_api->pinWrite(&g_ioport.p_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);
R_IOPORT_PinWrite(&g_ioport_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);

它们有何不同?这就涉及 FSP 源码设计的理念:

  1. 配置与接口分离
  2. 接口与实例分离

4.2.1 配置与接口分离

以 GPIO 为例,如下图有 1 个 LED、1 个按键:

对于同一个 MCU,PIN1、PIN2 的操作是类似的,它们的接口函数可以只写一套。但是PIN1 需要被设置为输出功能,PIN2 需要被设置为输入功能并且使能它的内部上拉电阻。即:PIN1、PIN2 的接口函数可以是同一套,但是它们的配置是不一样的。

对于 ioport,使用 ioport_pin_cfg_t 结构体来描述一个引脚的配置:

typedef struct st_ioport_pin_cfg
{uint32_t pin_cfg; ///< Pin PFS configuration - Use ioport_cfg_options_t parametersto configurebsp_io_port_pin_t pin; ///< Pin identifier
} ioport_pin_cfg_t;

比如对于 PIN1,在 FSP 的配置工具里把它配置为输出;对于 PIN2,在 FSP 的配置工具里把它配置为输入、上拉,可以得到下面 2 项:

const ioport_pin_cfg_t g_bsp_pin_cfg_data[] ={
……
{ .pin = BSP_IO_PORT_00_PIN_05, .pin_cfg = ((uint32_t) IOPORT_CFG_IRQ_ENABLE| (uint32_t) IOPORT_CFG_PORT_DIRECTION_INPUT | (uint32_t) IOPORT_CFG_PULLUP_ENABLE) },
{ .pin = BSP_IO_PORT_00_PIN_06, .pin_cfg = ((uint32_t) IOPORT_CFG_PORT_DIRECTION_OUTPUT| (uint32_t) IOPORT_CFG_PORT_OUTPUT_LOW) },
……
};

使用硬件前,需要使用接口函数根据用户提供的配置信息来配置硬件。对于 ioport,使用 ioport_api_t 结构体来描述引脚的接口函数,在 r_ioport.c 里可以看到如下结构体:

/* IOPort Implementation of IOPort Driver */
const ioport_api_t g_ioport_on_ioport =
{.open = R_IOPORT_Open,.close = R_IOPORT_Close,.pinsCfg = R_IOPORT_PinsCfg,.pinCfg = R_IOPORT_PinCfg,.pinEventInputRead = R_IOPORT_PinEventInputRead,.pinEventOutputWrite = R_IOPORT_PinEventOutputWrite,.pinRead = R_IOPORT_PinRead,.pinWrite = R_IOPORT_PinWrite,.portDirectionSet = R_IOPORT_PortDirectionSet,.portEventInputRead = R_IOPORT_PortEventInputRead,.portEventOutputWrite = R_IOPORT_PortEventOutputWrite,.portRead = R_IOPORT_PortRead,.portWrite = R_IOPORT_PortWrite,
};

对于 ioport,配置与接口是分离的:在 ioport_cfg_t 参数里指定引脚、指定配置值,然后调用“pinCfg”函数指针去配置引脚。使用 FSP 的配置工具时,选择某个引脚、设置它的参数,就会生成对应的 ioport_cfg_t 结构体。当我们编写程序调用 r_ioport.c 里的pinCfg”函数指针时,传入这个 ioport_cfg_t 结构体。

4.2.2 接口与实例分离

假设有如下图所示的两代产品,它们的 LED 接法不一样:

image2.7

对于第 1 代产品,在 r_ioport.c 里已经实现了如下结构体:

/* IOPort Implementation of IOPort Driver */
const ioport_api_t g_ioport_on_ioport =
{.open = R_IOPORT_Open,.close = R_IOPORT_Close,.pinsCfg = R_IOPORT_PinsCfg,.pinCfg = R_IOPORT_PinCfg,.pinEventInputRead = R_IOPORT_PinEventInputRead,.pinEventOutputWrite = R_IOPORT_PinEventOutputWrite,.pinRead = R_IOPORT_PinRead,.pinWrite = R_IOPORT_PinWrite,.portDirectionSet = R_IOPORT_PortDirectionSet,.portEventInputRead = R_IOPORT_PortEventInputRead,.portEventOutputWrite = R_IOPORT_PortEventOutputWrite,.portRead = R_IOPORT_PortRead,.portWrite = R_IOPORT_PortWrite,
};

对于第 2 代产品,我们可以在 r_spiioport.c 里实现如下结构体:

/* IOPort Implementation of SPIIOPort Driver */
const ioport_api_t g_spiioport_on_ioport =
{.open = R_SPIIOPORT_Open,.close = R_SPIIOPORT_Close,.pinsCfg = R_SPIIOPORT_PinsCfg,.pinCfg = R_SPIIOPORT_PinCfg,.pinEventInputRead = R_SPIIOPORT_PinEventInputRead,.pinEventOutputWrite = R_SPIIOPORT_PinEventOutputWrite,.pinRead = R_SPIIOPORT_PinRead,.pinWrite = R_SPIIOPORT_PinWrite,.portDirectionSet = R_SPIIOPORT_PortDirectionSet,.portEventInputRead = R_SPIIOPORT_PortEventInputRead,.portEventOutputWrite = R_SPIIOPORT_PortEventOutputWrite,.portRead = R_SPIIOPORT_PortRead,.portWrite = R_SPIIOPORT_PortWrite,
};

现在有两个接口结构体:g_ioport_on_ioport、g_spiioport_on_ioport,使用哪一个?在哪里指定?需要引入另一个概念:实例。以 ioport 为例,有如下结构体类型:

/** This structure encompasses everything that is needed to use an instance of this 
interface.
*/
typedef struct st_ioport_instance
{ioport_ctrl_t * p_ctrl; ///< Pointer to the control structure for this instanceioport_cfg_t const * p_cfg; ///< Pointer to the configuration structure for this instanceioport_api_t const * p_api; ///< Pointer to the API structure for this instance
} ioport_instance_t;

ioport_instance_t 结构体中有 3 个成员:

  1. p_cfg 指针:使用不同的引脚、不同的配置时,就让它指向一个对应的配置结构体;
  2. p_api 指针:使用不同的硬件接口时,就让它指向对应的接口函数结构体;
  3. p_ctrl 指针:起辅助作用,比如用来标记是否启用了该模块、记录它的寄存器基地址

以工程“MyBlinkyProject”为例,在 ra_gen\common_data.c 中定义了一个实例化对象:

const ioport_instance_t g_ioport =
{ .p_api = &g_ioport_on_ioport, .p_ctrl = &g_ioport_ctrl, .p_cfg = &g_bsp_pin_cfg, };

g_ioport 里:

  • p_cfg 指向 g_bsp_pin_cfg,它是配置信息;
  • p_api 指向 g_ioport_on_ioport,它是接口信息;
  • p_ctrl 指向 g_ioport_ctrl,它只是被用来记录驱动是否被打开。

对于第 1 代产品,g_ioport 的 p_api 指向 g_ioport_on_ioport;对于第 2 代产品,让它指向 g_spiioport_on_ioport。使用实例化结构体 g_ioport 来操作 LED 时,即使更换了底层的操作接口,用户的代码仍然无需改变:

g_ioport.p_api->pinWrite(&g_ioport.p_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);

如果直接使用接口函数操作 LED 的话,如下:

R_IOPORT_PinWrite(&g_ioport_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);

对于第 2 代产品,就需要修改成另一个接口,如下:

R_SPIIOPORT_PinWrite(&g_ioport_ctrl, Leds.p_leds[BSP_LED_LED1], BSP_IO_LEVEL_LOW);

使用实例化结构体来操作硬件,在代码的统一性、可读性和可移植性上是有很大优势的。它允许应用程序和硬件之间的进一步抽象。更改底层的外围设备时,只需要修改实例化结构体,不需要更改应用层代码。在实际开发过程中,也可以直接调用底层 API 函数(比如 R_IOPORT_PinWrite),这有两个原因:

  1. 基于编译器优化的考虑:假设定义了 10 个 API 接口函数,但是应用层代码只用到 1 个,那么另外的 9 个函数是可以被“优化掉”的,它们可以不被编进可执行程序里。如果使用实例化结构体的话,因为 p_api 里引用了这 10 个函数,它们都不会被优化掉。
  2. 一些客户可能只希望调用最底层的 API(避免过于繁琐的函数指针)。

4.3 代码规范

4.3.1 术语

  • **模块(Module):**模块可以是外设驱动程序、纯软件或介于这两者之间,并且是 FSP 的构建模块。模块通常是独立的单元,但它们可能依赖于其他模块。可以通过组合多个模块来构建应用程序,为用户提供所需功能。
  • 模块实例(Module Instance): 单个、独立的实例化(配置)模块。比如 r_ioport.c实现了 GPIO 的操作,它是一个 Module。要操作某个引脚时,就需要“模块实例”即“ioport_instance_t 结构体”,它里面含有配置信息、接口信息。
  • 接口( Interfaces): 接口包含 API 定义,具有相似功能的模块可以共用这些 API 定义。模块通过这些定义提供常用功能。通过这些 API 定义,使用相同接口的模块可以互换使用。可以将接口视为两个模块之间的合同,两个模块均同意使用合同中达成一致的信息进行协作。接口只是定义,并不会增加代码的大小。比如在 r_ioport_api.h 里定义了 ioport 的 API。
  • 实例(Instances): 接口规定所提供的功能,而实例则真正实现了这些功能。比如r_ioport.h 里定义了 API 接口,在 r_ioport.c 里实现了这些接口,r_ioport.c 就是“实例”。
  • 驱动程序( Drivers): 驱动程序是一种特定类型的模块,可以直接修改 RA 产品家族MCU 上的寄存器。
  • **堆叠(Stacks):**这个单词很容易跟 C 语言里的堆(heap)、栈(stack)混淆,但是在这里它不是堆栈的意思。FSP 架构所采用的设计方式是,模块可以协同工作以形成一个堆叠。堆叠就是由顶层模块及其所有依赖项组成,简单地说就是多个有依赖关系的模块。
  • 应用程序(Application): 归用户所有并由用户维护的代码。
  • 回调函数(Callback Functions): 当有事件发生时(例如,USB 接收到一些数据时),将调用这些函数。它们是应用程序的组成部分,如果用于中断,应尽量简短,因为它们将在中断服务程序内运行,会阻止其他中断执行。

4.3.2 API 命名规则

一般来说,内部函数遵循“NounNounVerb”(名词名词动词)的命名约定,例如CommunicationAbort()。函数的返回值表示是否成功,函数要对外输出结果时,这些结果只在输出参数中返回,并且第一个参数始终是指向其控制结构体的指针。下面是 FSP 中常用前缀:

  1. R_BSP_xxx: BSP 函数的前缀,例如 R_BSP_VersionGet()。
  2. BSP_xxx: BSP 宏的前缀,例如 BSP_IO_LEVEL_LOW。
  3. FSP_xxx: 常用的 FSP的前缀,主要定义错误代码(例如 FSP_ERR_INVALID_ARGUMENT)和版本信息(例如 FSP_VERSION_BUILD)。
  4. g_<interface>on<instance>: 实例的常量全局结构体的名称,用这个结构体管理 API 的各个实现函数,比如 g_ioport_on_ioport 结构体里是 r_ioport.c 实现的各个 API 函数。
  5. r_<interface>_api.h: 接口模块头文件的名称,例如 r_spi_api.h。
  6. R_<MODULE>_<Function>: FSP 驱动程序 API 的名称,例如 R_SPI_WriteRead()。
  7. RM_<MODULE>_<Function>: 中间件函数的名称,例如 RM_BLE_ABS_Open()。

本章完

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/74206.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

deepin V23通过flathub安装steam畅玩游戏

deepin V23缺少32位库&#xff0c;在星火商店安装的steam,打开报错&#xff0c;无法使用&#xff01; 通过flathub网站安装steam,可以正常使用&#xff0c;详细教程如下&#xff1a; flathub网址&#xff1a;主页 | Flathub 注意&#xff1a;flathub下载速度慢&#xff0c;只…

Redis从基础到进阶篇(四)----性能调优、分布式锁与缓存问题

目录 一、Redis 集群演变 1.1 ReplicationSentinel*高可用 1.2 ProxyReplicationSentinel(仅仅了解) 1.3 Redis Cluster 集群 (重点&#xff09; 1.3.1 Redis-cluster架构图 1.3.2 工作原理 1.3.3 主从切换 1.3.4 副本漂移 1.3.5 分片漂移 二、Redis版本历史&#xf…

ODC现已开源:与开发者共创企业级的数据库协同开发工具

OceanBase 开发者中心&#xff08;OceanBase Developer Center&#xff0c;以下简称 ODC&#xff09;是一款开源的数据库开发和数据库管理协同工具&#xff0c;从首个版本上线距今已经发展了三年有余&#xff0c;ODC 逐步由一款专为 OceanBase 打造的开发者工具演进成为支持多数…

xCode14.3.1运行MonkeyDev出现“Executable Not Found“的解决办法

安装MonkeyDev遇到的坑 环境&#xff1a;Xcode Version 14.3.1 (14E300c) 错误提示 is not a valid path to an executable file. 报错 /Users/xxxx//Library/Developer/Xcode/DerivedData/MonTest-ccparhdyzjuqhjdergwrngpfwwoh/Build/Products/Debug-iphoneos/MonTest.app…

go-zerogo web集成redis实战

前言 上一篇&#xff1a;go-zero&go web集成JWT和cobra命令行工具实战 从零开始基于go-zero搭建go web项目实战-03集成redis实战 源码仓库地址 源码 https://gitee.com/li_zheng/treasure-box golang redis 客户端 Go-Redis 地址&#xff1a; GitHub: https://github.…

Maven 知识点总结

文章目录 Maven1、Maven 坐标2、Maven 仓库3、Maven 依赖依赖配置依赖范围依赖调解原则排除依赖 4、Maven 生命周期5、Maven 聚合与继承 Maven Maven是一个项目管理工具&#xff0c;它包含了项目对象模型&#xff08;POM&#xff1a;Project Object Model&#xff09;&#xf…

windows系统docker中将vue项目网站部署在nginx上

一、首先在windows系统上下载并安装docker&#xff0c;要下载windows版本 https://www.docker.com/products/docker-desktop/ PS&#xff1a;安装过程中需要WSL&#xff0c;我的是win11系统&#xff0c;直接提示了我安装就可以下一步了。其他windows系统版本我不知道是否需要单…

简化转换器:使用您理解的单词进行最先进的 NLP — 第 1 部分 — 输入

一、说明 变形金刚是一种深度学习架构&#xff0c;为人工智能的发展做出了杰出贡献。这是人工智能和整个技术领域的一个重要阶段&#xff0c;但也有点复杂。截至今天&#xff0c;变形金刚上有很多很好的资源&#xff0c;那么为什么要再制作一个呢&#xff1f;两个原因&#xff…

# Spring MVC与RESTful API:如何设计高效的Web接口

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

数学建模--K-means聚类的Python实现

目录 1.算法流程简介 2.1.K-mean算法核心代码 2.2.K-mean算法效果展示 3.1.肘部法算法核心代码 3.2.肘部法算法效果展示 1.算法流程简介 #k-means聚类方法 """ k-means聚类算法流程: 1.K-mean均值聚类的方法就是先随机选择k个对象作为初始聚类中心. 2.这…

AI伦理:科技发展中的人性之声

文章目录 AI伦理的关键问题1. 隐私问题2. 公平性问题3. 自主性问题4. 伦理教育问题 隐私问题的拓展分析数据收集和滥用隐私泄露和数据安全 公平性问题的拓展分析历史偏见和算法模型可解释性 自主性问题的拓展分析自主AI决策伦理框架 伦理教育的拓展分析伦理培训 结论 &#x1f…

vue学习之基本用法

1. 前期准备 安装vs code IDE&#xff0c;vs code 安装 插件 open in brower新建 vue-learning 文件夹vs code IDE打开文件夹 2. 基本用法 创建demo1.html文件,内容如下 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8&qu…

华为数据管理——《华为数据之道》

数据分析与开发 元数据是描述数据的数据&#xff0c;用于打破业务和IT之间的语言障碍&#xff0c;帮助业务更好地理解数据。 元数据是数据中台的重要的基础设施&#xff0c;元数据治理贯彻数据产生、加工、消费的全过程&#xff0c;沉淀了数据资产&#xff0c;搭建了技术和业务…

Tomcat配置ssl、jar包

Tomcat配置ssl 部署tomcat服务&#xff0c;项目做到用https访问&#xff0c;使用nginx去做&#xff0c;访问任意一个子网站&#xff0c;都是https 或者 医美项目需要 上传jdk 456 tomcat war包 [nginx-stable] namenginx stable repo baseurlhttp://nginx.org/packages/…

“内存炸弹”DDOS拒绝服务攻击

Windows平台演示 最早的内存炸弹是 zip 炸弹&#xff0c;也称为死亡 zip&#xff0c;它是一种恶意计算机文件&#xff0c;旨在使读取该文件的程序崩溃或瘫痪。zip 炸弹不会劫持程序的操作&#xff0c;而是利用解压缩压缩文件所需的时间、磁盘空间或内存。 zip 炸弹的一个示例…

关于 RK3568的linux系统killed用户应用进程(用户现象为崩溃) 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/132710642 红胖子网络科技博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬…

Linux权限的概念和管理

Linux权限的概念和管理 1. Linux权限的概念2. Linux权限管理2.1 文件访问者的分类&#xff08;人&#xff09;2.2 文件类型和访问权限&#xff08;事物属性&#xff09;2.2.1 文件类型2.2.2 基本权限 2.3 文件权限值的表示方法2.4文件访问权限的相关设置方法1. chmod&#xff0…

ESP32用作经典蓝牙串口透传模块与手机进行串口通信

ESP32用作经典蓝牙串口透传模块与手机进行串口通信 简介ESP32开发板Arduino程序手机与ESP32开发板进行蓝牙串口透传通信总结 简介 ESP32-WROOM-32模组集成了双模蓝牙包括传统蓝牙&#xff08;BR/EDR&#xff09;、低功耗蓝牙&#xff08;BLE&#xff09;和 Wi-Fi&#xff0c;具…

linux修改最大线程数却未生效的原因

可能是没有重新对新文件进行编译 更改一个进程所能创建的最大进程数之前 更改一个进程所能创建的最大进程数之后 测试代码 #include <iostream> #include <unistd.h> #include <sys/wait.h> #include <string.h> #include <stdio.h> #include…

数据库相关基础知识

第一章 概念 1、数据&#xff1a;描述事物的符号记录称为数据。特点&#xff1a;数据和关于数据的解释不可分。 2、数据库&#xff1a;长期存储在计算机内、有组织、可共享的大量的数据的集合。数据库中的数据按照一定的数据模型组织、描述和存储&#xff0c;具有较小的冗余度、…