K8s中的RBAC(Role-Based Access Control)

摘要

RBAC(基于角色的访问控制)是一种在Kubernetes中用于控制用户对资源的访问权限的机制。以下是RBAC的设计实现说明:

  1. 角色(Role)和角色绑定(RoleBinding):角色定义了一组权限,角色绑定将角色与用户或用户组相关联。通过角色和角色绑定,可以在集群或命名空间级别授予用户或用户组对资源的访问权限。
  2. 服务账号(ServiceAccount):服务账号是一种专门用于身份认证和授权的账号类型。可以为服务账号分配角色,在应用程序中使用它来访问Kubernetes API。
  3. ClusterRole和ClusterRoleBinding:与角色和角色绑定类似,但是ClusterRole和ClusterRoleBinding适用于整个集群而不是单个命名空间。集群级别的角色和角色绑定可以用于集群范围的操作,例如创建命名空间或操作集群配置。
  4. 命名空间(Namespace)级别的RBAC:通过在命名空间级别定义角色和角色绑定,可以将特定的权限限制在命名空间内。这样,不同命名空间的用户或用户组可以具有不同的权限。
  5. 细粒度控制:RBAC允许在资源级别进行细粒度的访问控制。可以使用RBAC规则来控制对特定资源类型的创建、查看、修改和删除权限。
  6. 隐式授权:RBAC支持隐式授权,即如果用户具有访问某个资源的权限,那么他也具有访问该资源子资源的权限。例如,如果用户具有访问Pod的权限,那么他也具有访问该Pod的日志的权限。
  7. 预定义角色和角色绑定:Kubernetes提供了一些预定义的角色和角色绑定,包括集群管理员、命名空间管理员和只读用户等。这些预定义角色可以用作RBAC的基础,也可以根据需要创建自定义角色。

总的来说,RBAC是通过角色和角色绑定来定义和管理用户对资源的访问权限。它允许细粒度的控制和灵活的配置,以便在Kubernetes中确保安全和权限的管理。通过使用RBAC,可以根据用户或用户组的角色来限制他们对Kubernetes集群中的资源的访问和操作。

Simply put

RBAC (Role-Based Access Control) is a mechanism in Kubernetes (K8s) that controls user access to resources. Here is a detailed explanation of RBAC design and implementation in Kubernetes:

  1. Roles and RoleBindings: Roles define a set of permissions, and RoleBindings associate roles with users or user groups. Roles and RoleBindings are used to grant users or groups access to resources at the cluster or namespace level.
  2. Service Accounts: Service accounts are dedicated accounts used for authentication and authorization purposes. Roles can be assigned to service accounts, and they can be utilized by applications to access the Kubernetes API.
  3. ClusterRoles and ClusterRoleBindings: Similar to Roles and RoleBindings, but ClusterRoles and ClusterRoleBindings apply at the cluster level instead of a specific namespace. Cluster-level roles and role bindings can be used for cluster-wide operations, such as creating namespaces or managing cluster configurations.
  4. Namespace-level RBAC: By defining roles and role bindings at the namespace level, permissions can be restricted within specific namespaces. This allows different users or user groups in different namespaces to have different access permissions.
  5. Fine-grained control: RBAC allows fine-grained access control at the resource level. RBAC rules can be used to control permissions for creating, viewing, modifying, and deleting specific resource types.
  6. Implicit authorization: RBAC supports implicit authorization, meaning if a user has access permissions to a resource, they also have access to its subresources. For example, if a user has access to Pods, they also have access to view the logs of that Pod.
  7. Predefined Roles and RoleBindings: Kubernetes provides some predefined roles and role bindings, including cluster-admin, namespace-admin, and read-only user roles. These predefined roles can be used as a foundation for RBAC or custom roles can be created as per requirements.

In summary, RBAC in Kubernetes is implemented using roles and role bindings to define and manage user access to resources. It allows for fine-grained control and flexible configuration to ensure effective security and permissions management within a Kubernetes cluster. By utilizing RBAC, user access and operations on resources can be restricted based on their roles and permissions.

Can-i 命令说明

在Kubernetes(K8s)中,kubectl can-i命令用于检查当前用户对指定资源的操作权限。它可以帮助用户确定他们是否有权限执行某个特定操作。

kubectl can-i命令的语法如下:

kubectl auth can-i VERB RESOURCE

其中,VERB表示要执行的操作,例如"get"、“create”、“delete"等,而RESOURCE表示要操作的资源类型,例如"pods”、“deployments”、"services"等。

kubectl can-i命令会在集群中查询当前用户的权限配置,然后确定用户是否具有执行相应操作的权限。如果用户具有权限,则输出"yes";如果用户没有权限,则输出"no"。此外,如果指定的资源类型或操作无效,命令会输出"no (no such resource/group/verb)"。

例如,要检查当前用户是否有权限获取命名空间中的部署(deployments),可以运行以下命令:

kubectl auth can-i get deployments -n <namespace>

其中,<namespace>是要检查权限的命名空间。

kubectl can-i命令对于用户在执行操作之前进行权限检查非常有用。它可以帮助用户避免未经授权的操作,并提供更好的安全性和控制。

On the other hand

In the vast world of Kubernetes, where countless containers are orchestrated seamlessly, RBAC (Role-Based Access Control) emerges as a powerful tool to maintain order and security.

In this futuristic realm, organizations have established massive clusters spanning galaxies, each containing a multitude of applications and services. The need for efficient and granular authorization is paramount, ensuring that only the right individuals have access to perform specific actions within the cluster.

Enter RBAC, a system designed to govern access based on predefined roles and permissions. It serves as a protective shield guarding the cluster against unauthorized access and potential malicious activities.

At the core of RBAC lies the concept of roles, which represent a collection of permissions defining what actions can be performed. These roles are meticulously crafted according to the specific needs of each entity within the Kubernetes infrastructure - be it a user, a group, or even a service account.

Roles are then bound to subjects, granting them the authority to execute actions within the cluster. Kubernetes administrators have the power to assign roles to individual users or assign them to groups for convenient management. With RBAC, organizations can enforce the principle of least privilege, ensuring that users only have access to the resources and functions they truly need.

The architecture of RBAC is fortified with additional layers of complexity, introducing role bindings and service accounts. Role bindings establish the association between roles and subjects, ensuring that each entity operates within the boundaries set by their assigned permissions. Service accounts, on the other hand, enable Kubernetes services themselves to securely authenticate and interact with the cluster, further enhancing the system’s flexibility.

But the true power of RBAC shines when combined with the dynamic nature of Kubernetes. Through the utilization of namespaces, RBAC can partition the cluster, confining roles and subjects to specific project boundaries. This enables organizations to maintain isolation and control across a multitude of teams and projects, ensuring that access permissions are carefully curated and enforced.

As the Kubernetes universe continues to expand with new features and evolving demands, RBAC stands as a steadfast guardian. Its flexible and modular design allows it to adapt to the ever-changing needs of organizations, effortlessly regulating access to critical resources, and preserving the cluster’s integrity.

In this dynamic future, where the Kubernetes landscape continuously evolves with technological advancements, RBAC ensures that the intergalactic realm of containers remains secure, regulated, and protected against the unknown forces that may seek to infiltrate and disrupt this intricate web of services.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/74196.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

# Spring MVC与RESTful API:如何设计高效的Web接口

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

数学建模--K-means聚类的Python实现

目录 1.算法流程简介 2.1.K-mean算法核心代码 2.2.K-mean算法效果展示 3.1.肘部法算法核心代码 3.2.肘部法算法效果展示 1.算法流程简介 #k-means聚类方法 """ k-means聚类算法流程: 1.K-mean均值聚类的方法就是先随机选择k个对象作为初始聚类中心. 2.这…

AI伦理:科技发展中的人性之声

文章目录 AI伦理的关键问题1. 隐私问题2. 公平性问题3. 自主性问题4. 伦理教育问题 隐私问题的拓展分析数据收集和滥用隐私泄露和数据安全 公平性问题的拓展分析历史偏见和算法模型可解释性 自主性问题的拓展分析自主AI决策伦理框架 伦理教育的拓展分析伦理培训 结论 &#x1f…

spring---第六篇

系列文章目录 文章目录 系列文章目录一、spring事务传播机制二、spring事务什么时候会失效?一、spring事务传播机制 多个事务方法相互调用时,事务如何在这些方法间传播 方法A是一个事务的方法,方法A执行过程中调用了方法B,那么方法B有无事务以及方法B对事务的要求不同都 会…

vue学习之基本用法

1. 前期准备 安装vs code IDE&#xff0c;vs code 安装 插件 open in brower新建 vue-learning 文件夹vs code IDE打开文件夹 2. 基本用法 创建demo1.html文件,内容如下 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8&qu…

华为数据管理——《华为数据之道》

数据分析与开发 元数据是描述数据的数据&#xff0c;用于打破业务和IT之间的语言障碍&#xff0c;帮助业务更好地理解数据。 元数据是数据中台的重要的基础设施&#xff0c;元数据治理贯彻数据产生、加工、消费的全过程&#xff0c;沉淀了数据资产&#xff0c;搭建了技术和业务…

Tomcat配置ssl、jar包

Tomcat配置ssl 部署tomcat服务&#xff0c;项目做到用https访问&#xff0c;使用nginx去做&#xff0c;访问任意一个子网站&#xff0c;都是https 或者 医美项目需要 上传jdk 456 tomcat war包 [nginx-stable] namenginx stable repo baseurlhttp://nginx.org/packages/…

软考知识汇总-计算机系统

文章目录 1 计算器 1 计算器 算术逻辑单元&#xff08;ALU&#xff09;&#xff1a;运算器重要组成部件&#xff0c;负责处理数据&#xff0c;实现对数据的算数运算和逻辑运算。累加寄存器&#xff08;AC&#xff09;&#xff1a;简称累加器&#xff0c;为ALU提供数据并暂存运…

软件工程笔记001

2023年9月5日&#xff0c;周二上午 软件工程的目标 软件工程的目标是成功地开发一个软件&#xff1a; 较低的开发成本能按时交付软件开发出来的软件该有的功能都有开发出来的软件运行效率高开发出来的软件可靠性高开发出来的软件易于维护 软件的生存周期 概念 软件生存周期…

华为OD机考算法题:字符串化繁为简

目录 题目部分 解读与分析 代码实现 题目部分 题目字符串化繁为简题目说明给定一个输入字符串&#xff0c;字符串只可能由英文字母 (a~z、A~Z )和左右小括号 ((、))组成。当字符里存在小括号时&#xff0c;小括号是成对的&#xff0c;可以有一个或多个小括号对&#xff0c;…

“内存炸弹”DDOS拒绝服务攻击

Windows平台演示 最早的内存炸弹是 zip 炸弹&#xff0c;也称为死亡 zip&#xff0c;它是一种恶意计算机文件&#xff0c;旨在使读取该文件的程序崩溃或瘫痪。zip 炸弹不会劫持程序的操作&#xff0c;而是利用解压缩压缩文件所需的时间、磁盘空间或内存。 zip 炸弹的一个示例…

mvvm框架下对wpf的DataGrid多选,右键操作

第一步&#xff1a;在DataGrid中添加ContextMenu <DataGrid.ContextMenu><ContextMenu><MenuItem Header"删除选中项" Command"{Binding DeleteSelectedCommand}" /></ContextMenu></DataGrid.ContextMenu> 第二步&#xff…

ldconfig和ldd用法

ldconfig和ldd用法 一、ldconfig ldconfig是一个动态链接库管理命令&#xff0c;为了让动态链接库为系统所共享,还需运行动态链接库的管理命令--ldconfig。 ldconfig 命令的用途,主要是在默认搜寻目录(/lib和/usr/lib)以及动态库配置文件/etc/ld.so.conf内所列的目录下,搜索出…

关于 RK3568的linux系统killed用户应用进程(用户现象为崩溃) 的解决方法

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/132710642 红胖子网络科技博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬…

基于Matlab实现多个数字水印案例(附上源码+数据集)

数字水印是一种在数字图像或视频中嵌入特定信息的技术&#xff0c;以保护知识产权和防止盗版。在本文中&#xff0c;我们将介绍如何使用Matlab实现数字水印。 文章目录 实现步骤源码数据集下载 实现步骤 首先&#xff0c;我们需要选择一个用于嵌入水印的图像。这可以是原始图像…

Linux权限的概念和管理

Linux权限的概念和管理 1. Linux权限的概念2. Linux权限管理2.1 文件访问者的分类&#xff08;人&#xff09;2.2 文件类型和访问权限&#xff08;事物属性&#xff09;2.2.1 文件类型2.2.2 基本权限 2.3 文件权限值的表示方法2.4文件访问权限的相关设置方法1. chmod&#xff0…

ESP32用作经典蓝牙串口透传模块与手机进行串口通信

ESP32用作经典蓝牙串口透传模块与手机进行串口通信 简介ESP32开发板Arduino程序手机与ESP32开发板进行蓝牙串口透传通信总结 简介 ESP32-WROOM-32模组集成了双模蓝牙包括传统蓝牙&#xff08;BR/EDR&#xff09;、低功耗蓝牙&#xff08;BLE&#xff09;和 Wi-Fi&#xff0c;具…

linux修改最大线程数却未生效的原因

可能是没有重新对新文件进行编译 更改一个进程所能创建的最大进程数之前 更改一个进程所能创建的最大进程数之后 测试代码 #include <iostream> #include <unistd.h> #include <sys/wait.h> #include <string.h> #include <stdio.h> #include…

HTTP【总结】

1. 当用户在浏览器输入网址回车之后&#xff0c;网络协议都做了哪些工作&#xff1f; 首先解析出URL中的域名&#xff0c;根据域名获取对应的ip地址&#xff0c;从浏览器缓存中查看&#xff0c;如果没有则从本机域名解析文件hosts中查看&#xff0c;还没有则从DNS的层层解析。…

数据库相关基础知识

第一章 概念 1、数据&#xff1a;描述事物的符号记录称为数据。特点&#xff1a;数据和关于数据的解释不可分。 2、数据库&#xff1a;长期存储在计算机内、有组织、可共享的大量的数据的集合。数据库中的数据按照一定的数据模型组织、描述和存储&#xff0c;具有较小的冗余度、…