数据结构从入门到精通——树和二叉树

树和二叉树

  • 前言
  • 一、树概念及结构
    • 1.1树的概念
    • 1.2 树的相关概念(重要)
    • 1.3 树的表示
    • 1.4 树在实际中的运用(表示文件系统的目录树结构)
  • 二、二叉树概念及结构
    • 2.1二叉树概念
    • 2.2现实中的二叉树
    • 2.3 特殊的二叉树
    • 2.4 二叉树的性质
    • 2.5 二叉树的存储结构
  • 三、树和二叉树的练习题
    • 答案


前言

树和二叉树是计算机科学中常用的数据结构,它们在数据存储、搜索、排序等多个领域都有着广泛的应用。从简单的二叉树出发,我们可以逐步理解更复杂的树结构,如红黑树、AVL树等。

二叉树是一种每个节点最多有两个子节点的树结构,通常子节点被称为“左子节点”和“右子节点”。这种结构使得二叉树在编程中非常易于实现和操作。例如,我们可以使用数组或链表来存储二叉树,并通过递归算法来实现遍历、查找和插入等操作。

然而,二叉树并不是唯一的树结构。在实际应用中,我们可能需要处理更复杂的树形结构,如多叉树和森林等。多叉树是指每个节点可以有多个子节点的树结构,而森林则是由多个不相交的树组成的集合。这些树形结构在处理实际问题时,往往能够提供更好的解决方案。

除了上述的树形结构外,还有一些特殊的树形结构,如堆、并查集、字典树等。堆是一种特殊的完全二叉树,它可以用于实现优先队列等数据结构;并查集则是一种用于处理不相交集合合并及查询问题的数据结构;字典树则是一种用于快速查找字符串的数据结构。

总的来说,树形结构是一种非常有用的数据结构,它们在计算机科学中扮演着重要的角色。通过深入理解树和二叉树的基本原理和应用场景,我们可以更好地应用它们来解决实际问题,提高程序的效率和可靠性。因此,对于学习计算机科学的人来说,掌握树形结构是非常重要的。


一、树概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

有一个特殊的结点,称为根结点,根节点没有前驱结点,除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继因此,树是递归定义的。

在这里插入图片描述
在这里插入图片描述

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

在这里插入图片描述

1.2 树的相关概念(重要)

在这里插入图片描述

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

  • 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点

  • 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点

  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;这只是一般的认知,有些书上也会将第一层看作0,具体按题目来分析。一般题目不说都是按1来看

  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

  • 森林:由m(m>0)棵互不相交的树的集合称为森林;

1.3 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct Node
{struct Node* _firstChild1; // 第一个孩子结点struct Node* _pNextBrother; // 指向其下一个兄弟结点DataType _data; // 结点中的数据域
};

在这里插入图片描述

1.4 树在实际中的运用(表示文件系统的目录树结构)

在这里插入图片描述

二、二叉树概念及结构

2.1二叉树概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

在这里插入图片描述
从上图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

在这里插入图片描述

2.2现实中的二叉树

在这里插入图片描述

在这里插入图片描述

2.3 特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2k - 1 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

在这里插入图片描述

2.4 二叉树的性质

  • 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2i-1 个结点.在这里插入图片描述

  • 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2h - 1 .在这里插入图片描述

  • 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有n0 = n2+1

  • 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log2 (n + 1 ) (ps:log2 (n + 1 ) 是log以2为底,n+1为对数)

  • 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

    • 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
    • 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
    • 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

2.5 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

  1. 顺序存储
    顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我会在后面的文章进行讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
    在这里插入图片描述

  2. 链式存储
    二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,等学到高阶数据结构如红黑树等会用到三叉链。

在这里插入图片描述
在这里插入图片描述

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{struct BinTreeNode* _pLeft; // 指向当前节点左孩子struct BinTreeNode* _pRight; // 指向当前节点右孩子BTDataType _data; // 当前节点值域
}// 三叉链
struct BinaryTreeNode
{struct BinTreeNode* _pParent; // 指向当前节点的双亲struct BinTreeNode* _pLeft; // 指向当前节点左孩子struct BinTreeNode* _pRight; // 指向当前节点右孩子BTDataType _data; // 当前节点值域
}

三、树和二叉树的练习题

  1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
    A、 不存在这样的二叉树
    B、 200
    C 、198
    D、 199

  2. 下列数据结构中,不适合采用顺序存储结构的是( )
    A 、非完全二叉树
    B 、堆
    C 、队列
    D 、栈

  3. 在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
    A、 n
    B、 n+1
    C 、n-1
    D 、n/2

  4. 一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
    A 、11
    B 、10
    C、 8
    D、12

  5. 一个具有767个节点的完全二叉树,其叶子节点个数为()
    A 、383
    B、 384
    C、 385
    D、 386

答案

1.B
2.A
3.A 按1来排序,左子树的值是其根的2倍,右子树是2倍加1,故没有右子树 根据 n0 = n2 + 1 且少一颗右子树 即n1 = 1 2n2 + 2 = 2n n2 = n - 1 n0 = n

在这里插入图片描述
4.B
5.B (767 - 1)/ 2 + 1


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/740900.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Java+SpringBoot+vue+element疫情药品采购出入库系统设计实现

基于JavaSpringBootvueelement疫情药品采购出入库系统设计实现 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留…

(2)(2.12) Robsense SwarmLink

文章目录 前言 1 规格&#xff08;根据制造商提供&#xff09; 2 EasySwarm 3 参数说明 前言 Robsense SwarmLink 遥测无线电可将多架无人机连接到一个地面站&#xff0c;而无需在地面站一侧安装多个无线电&#xff08;即创建一个网状网络&#xff09;。此外&#xff0c;还…

在项目管理中,如何更好地协同团队成员,提高团队合作效率?

在项目管理中&#xff0c;协同团队成员并提高团队合作效率是确保项目成功实施的关键。以下是一些建议&#xff0c;有助于更好地协同团队成员&#xff0c;提高团队合作效率&#xff1a; 一、明确角色与责任 为每个团队成员分配明确的角色和职责&#xff0c;通过制定详细的任务…

用chatgpt写论文重复率高吗?如何降低重复率?

ChatGPT写的论文重复率很低 ChatGPT写作是基于已有的语料库和文献进行训练的&#xff0c;因此在写作过程中会不可避免地引用或借鉴已有的研究成果和观点。同时&#xff0c;由于ChatGPT的表述方式和写作风格与人类存在一定的差异&#xff0c;也可能会导致论文与其他文章相似度高…

程序人生——Java中基本类型使用建议

目录 引出Java中基本类型使用建议建议21&#xff1a;用偶判断&#xff0c;不用奇判断建议22&#xff1a;用整数类型处理货币建议23&#xff1a;不要让类型默默转换建议24&#xff1a;边界、边界、还是边界建议25&#xff1a;不要让四舍五入亏了一方 建议26&#xff1a;提防包装…

掘根宝典之C++迭代器简介

在C中&#xff0c;容器是一种用于存储和管理数据的数据结构。C标准库提供了多种容器&#xff0c;每种容器都有其独特的特点和适用场景。 我们知道啊&#xff0c;我们可以通过下标运算符来对容器内的元素进行访问&#xff0c;但是只有少数几种容器才同时支持下标运算符&#xf…

闲聊电脑(7)常见故障排查

闲聊电脑&#xff08;7&#xff09;常见故障排查 夜深人静&#xff0c;万籁俱寂&#xff0c;老郭趴在电脑桌上打盹&#xff0c;桌子上的小黄鸭和桌子旁的冰箱又开始窃窃私语…… 小黄鸭&#xff1a;冰箱大哥&#xff0c;平时遇到电脑故障该咋处理呢&#xff1f; 冰箱&#xf…

k8s中calico网络组件部署时一个节点一直处于Pending状态

k8s中calico网络组件部署时一个节点一直处于Pending状态 故障截图 故障排查思路&#xff0c;通过describe查看具体原因 ~]# kubectl describe pod calico-node-pzlfv -n kube-system通过describe查看得知报错 Warning FailedScheduling 58s (x23 over 23m) default-sche…

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的扑克牌识别软件(Python+PySide6界面+训练代码)

摘要&#xff1a;开发扑克牌识别软件对于智能辅助决策工具的建立具有关键作用。本篇博客详细介绍了如何运用深度学习构建一个扑克牌识别软件&#xff0c;并提供了完整的实现代码。该系统基于强大的YOLOv8算法&#xff0c;并对比了YOLOv7、YOLOv6、YOLOv5&#xff0c;展示了不同…

tomcat配置好了,进不去这两个路径要一样

tomcat配置好了&#xff0c;进不去这两个路径要一样

原生JavaScript,根据后端返回扁平JSON动态【动态列头、动态数据】生成表格数据

前期准备&#xff1a; JQ下载地址&#xff1a; https://jquery.com/ <!DOCTYPE html> <html><head><meta charset"utf-8"><title>JSON动态生成表格数据,动态列头拼接</title><style>table {width: 800px;text-align: cen…

stm32的EXTI的初始化-学习笔记

简介&#xff1a; 最近在学习stm32外设的过程中&#xff0c;学到EXTI这个外设的时候&#xff0c;感觉有点复杂&#xff0c;虽然是hal库开发&#xff0c;但是不明白所以&#xff0c;所以跟着也野火的教程&#xff0c;一遍看寄存器&#xff0c;一边看hal库的例子&#xff0c;写一…

Echarts+Vue 首页大屏静态示例Demo 第四版 支持自适应

效果: 源码: <template><ScaleScreenclass="scale-wrap":selfAdaption="true":autoScale="true":class="{ fullscreen-container: isFullScreen }"><div class="bg"><dv-loading v-if="loading&…

LeetCode - 和为K的子数组

LCR 010. 和为 K 的子数组 看到这道题的时候&#xff0c;感觉还挺简单的&#xff0c;找到数组中和为k的连续子数组的个数&#xff0c;无非就是一个区间减去另一个区间的和等于k&#xff0c;然后想到了用前缀和来解决这道问题。再算连续子数组出现的个数的时候&#xff0c;可以使…

DJI RONIN 4D变0字节恢复案例

RONIN 4D这个产品听起来比较陌生&#xff0c;还是DJI大疆出品。没错&#xff0c;这是大疆进军影视级的重点明星机型。前阵子刚处理过大疆RONIN 4D的修复案例&#xff0c;下边这个案例是和exfat有关的老问题:文件长度变成0字节。 故障存储:希捷18T /MS Exfat文件系统。 故障现…

如何借助CRM系统获得直观的业务洞察?CRM系统图表视图解析!

Zoho CRM管理系统在优化客户体验方面持续发力&#xff0c;新年新UI&#xff0c;一波新功能正在赶来的路上。今天要介绍的新UI功能在正式推出之前&#xff0c;已经通过早鸟申请的方式给部分国际版用户尝过鲜了。Zoho CRM即将推出图表视图&#xff0c;将原始数据转换为直观的图表…

低代码开发平台-企业级可视化快速开发工具

一、你们是否也遇到了以下问题 &#xff08;1&#xff09;作为传统型的软件公司&#xff0c;你们是否也遇到以下困扰&#xff1a; &#xff08;2&#xff09;作为大型企业软件开发部&#xff0c;你们是否也遇到以下困扰&#xff1a; 二、低代码平台介绍 MSPF快速开发平台是一…

​如何使用 ArcGIS Pro 分析爆炸波及建筑

假设在某栋建筑内发生了爆炸&#xff0c;需要根据爆炸的范围分析出来波及的建筑&#xff0c;对于这一需求&#xff0c;我们可以通过ArcGIS Pro来实现&#xff0c;这里为大家介绍一下分析的方法&#xff0c;希望能对你有所帮助。 数据来源 教程所使用的数据是从水经微图中下载…

30个Linux性能问题诊断思路

文章目录 在Linux系统性能问题诊断过程中&#xff0c;有许多关键的检查点和技术可以用来识别潜在的问题源头。以下是30个Linux性能问题诊断思路的概览&#xff0c;包括但不限于&#xff1a; 系统负载监控&#xff1a; 使用uptime查看当前系统运行时间、在线用户数以及1/5/15分钟…

MathType2024官方原版补丁包下载

MathType 7是一款功能强大的数学公式编辑器&#xff0c;广泛应用于各种文档和演示中&#xff0c;用于创建和编辑复杂的数学公式。下面我将详细介绍MathType 7的主要功能和使用方法&#xff0c;以及一些使用技巧。 一、主要功能 公式编辑&#xff1a;MathType 7提供了一个直观…